Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 18(3): 1426-1432, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30667224

ABSTRACT

The use of mass-spectrometry-based techniques for global protein profiling of biomedical or environmental experiments has become a major focus in research centered on biomarker discovery; however, one of the most important issues recently highlighted in the new era of omics data generation is the ability to perform analyses in a robust and reproducible manner. This has been hypothesized to be one of the issues hindering the ability of clinical proteomics to successfully identify clinical diagnostic and prognostic biomarkers of disease. P-Mart ( https://pmart.labworks.org ) is a new interactive web-based software environment that enables domain scientists to perform quality-control processing, statistics, and exploration of large-complex proteomics data sets without requiring statistical programming. P-Mart is developed in a manner that allows researchers to perform analyses via a series of modules, explore the results using interactive visualization, and finalize the analyses with a collection of output files documenting all stages of the analysis and a report to allow reproduction of the analysis.


Subject(s)
Biomarkers , Mass Spectrometry/statistics & numerical data , Proteomics/statistics & numerical data , Software , Humans , Internet , Ions/chemistry , Mass Spectrometry/methods , Prognosis , Proteomics/methods
2.
Cancer Res ; 77(21): e47-e50, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29092938

ABSTRACT

P-MartCancer is an interactive web-based software environment that enables statistical analyses of peptide or protein data, quantitated from mass spectrometry-based global proteomics experiments, without requiring in-depth knowledge of statistical programming. P-MartCancer offers a series of statistical modules associated with quality assessment, peptide and protein statistics, protein quantification, and exploratory data analyses driven by the user via customized workflows and interactive visualization. Currently, P-MartCancer offers access and the capability to analyze multiple cancer proteomic datasets generated through the Clinical Proteomics Tumor Analysis Consortium at the peptide, gene, and protein levels. P-MartCancer is deployed as a web service (https://pmart.labworks.org/cptac.html), alternatively available via Docker Hub (https://hub.docker.com/r/pnnl/pmart-web/). Cancer Res; 77(21); e47-50. ©2017 AACR.


Subject(s)
Internet , Neoplasms/genetics , Proteomics , Software , Datasets as Topic , Gene Expression Regulation, Neoplastic , Mass Spectrometry , Peptides/genetics , Proteins/genetics
3.
BMC Genomics ; 13: 131, 2012 Apr 05.
Article in English | MEDLINE | ID: mdl-22480257

ABSTRACT

BACKGROUND: The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. RESULTS: VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. CONCLUSIONS: VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.


Subject(s)
Bacteria/genetics , Gene Expression Profiling/methods , Molecular Sequence Annotation/methods , Proteomics/methods , Software , Computer Graphics , Data Mining , Internet , Synechococcus/genetics , Yersinia pestis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...