Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4995, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28694444

ABSTRACT

The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at ≈ 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show long-term fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species.


Subject(s)
Dolphins/physiology , Animals , Australia , Conservation of Natural Resources , Fisheries , Population Dynamics , Surveys and Questionnaires
2.
PLoS One ; 11(8): e0161094, 2016.
Article in English | MEDLINE | ID: mdl-27529820

ABSTRACT

Marine protected area (MPA) designs are likely to require iterative refinement as new knowledge is gained. In particular, there is an increasing need to consider the effects of climate change, especially the ability of ecosystems to resist and/or recover from climate-related disturbances, within the MPA planning process. However, there has been limited research addressing the incorporation of climate change resilience into MPA design. This study used Marxan conservation planning software with fine-scale shallow water (<20 m) bathymetry and habitat maps, models of major benthic communities for deeper water, and comprehensive human use information from Ningaloo Marine Park in Western Australia to identify climate change resilience features to integrate into the incremental refinement of the marine park. The study assessed the representation of benthic habitats within the current marine park zones, identified priority areas of high resilience for inclusion within no-take zones and examined if any iterative refinements to the current no-take zones are necessary. Of the 65 habitat classes, 16 did not meet representation targets within the current no-take zones, most of which were in deeper offshore waters. These deeper areas also demonstrated the highest resilience values and, as such, Marxan outputs suggested minor increases to the current no-take zones in the deeper offshore areas. This work demonstrates that inclusion of fine-scale climate change resilience features within the design process for MPAs is feasible, and can be applied to future marine spatial planning practices globally.


Subject(s)
Aquatic Organisms , Climate Change , Conservation of Natural Resources , Biodiversity , Software
3.
PLoS One ; 9(4): e93178, 2014.
Article in English | MEDLINE | ID: mdl-24695338

ABSTRACT

The bycatch of small cetaceans in commercial fisheries is a global wildlife management problem. We used data from skippers' logbooks and independent observers to assess common bottlenose dolphin (Tursiops truncatus) bycatch patterns between 2003 and 2009 in the Pilbara Trawl Fishery, Western Australia. Both datasets indicated that dolphins were caught in all fishery areas, across all depths and throughout the year. Over the entire datasets, observer reported bycatch rates (n = 52 dolphins in 4,124 trawls, or 12.6 dolphins/1,000 trawls) were ca. double those reported by skippers (n = 180 dolphins in 27,904 trawls, or 6.5 dolphins/1,000 trawls). Generalised Linear Models based on observer data, which better explained the variation in dolphin bycatch, indicated that the most significant predictors of dolphin catch were: (1) vessel--one trawl vessel caught significantly more dolphins than three others assessed; (2) time of day--the lowest dolphin bycatch rates were between 00:00 and 05:59; and (3) whether nets included bycatch reduction devices (BRDs)--the rate was reduced by ca. 45%, from 18.8 to 10.3 dolphins/1,000 trawls, after their introduction. These results indicated that differences among vessels (or skippers' trawling techniques) and dolphin behavior (a diurnal pattern) influenced the rates of dolphin capture; and that spatial or seasonal adjustments to trawling effort would be unlikely to significantly reduce dolphin bycatch. Recent skipper's logbook data show that dolphin bycatch rates have not declined since those reported in 2006, when BRDs were introduced across the fishery. Modified BRDs, with top-opening escape hatches from which dolphins might escape to the surface, may be a more effective means of further reducing dolphin bycatch. The vulnerability of this dolphin population to trawling-related mortality cannot be assessed in the absence of an ongoing observer program and without information on trawler-associated dolphin community size, broader dolphin population size and connectivity with adjacent populations.


Subject(s)
Bottle-Nosed Dolphin , Fisheries , Animals , Australia
4.
PLoS One ; 8(7): e69863, 2013.
Article in English | MEDLINE | ID: mdl-23922829

ABSTRACT

Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10-35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.


Subject(s)
Coral Reefs , Animals , Anthozoa , Australia , Ecosystem
5.
PLoS One ; 8(7): e70105, 2013.
Article in English | MEDLINE | ID: mdl-23922921

ABSTRACT

Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km(2) of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km(2)). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas.


Subject(s)
Coral Reefs , Environmental Monitoring/instrumentation , Animals , Anthozoa/growth & development , Ecosystem , Image Processing, Computer-Assisted , Maps as Topic , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...