Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 252: 115298, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36966651

ABSTRACT

Here, we report on the design, synthesis, and biological evaluation of a new theranostic antibody drug conjugate (ADC), Cy5-Ab-SS-SN38, that consists of the HER2-specific antibody trastuzumab (Ab) connected to the near infrared (NIR) pentamethine cyanine dye Cy5 and SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is bound to an antibody through a glutathione-responsive self-immolative disulfide carbamate linker. For the first time, we explored this linker in ADC and found that it to reduce the drug release rate, which is important for safe drug delivery. The developed ADC exhibited specific accumulation and nanomolar anti-breast cancer activity on HER2-positive (HER2+) cell lines but no effect on HER2-. Animals treated with this ADC exhibited good tolerance. In vivo studies have shown that the ADC had good targeting ability for HER2+ tumors with much higher anticancer potency than trastuzumab itself or a mixture of trastuzumab with SN38. Side-by-side HER2+/HER2-xenograft at the 10 mg/kg dose exhibited specific accumulation and reduction of HER2+ tumor but not accumulation or growth inhibition of HER2-counterpart. The self-immolative disulfide linker implemented in this study was proven to be successful, broadening its utilization with other antibodies for targeted anticancer therapy in general. We believe that the theranostic ADCs comprising the glutathione-responsive self-immolative disulfide carbamate linker are applicable for the treatment and fluorescent monitoring of malignancies and anticancer drug delivery.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Animals , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Precision Medicine , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Glutathione
2.
Pharmaceutics ; 15(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678875

ABSTRACT

Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group's effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use.

3.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 12): 1203-1207, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34925882

ABSTRACT

4,6-Di-bromo-2,3,3-trimethyl-3H-indole, C11H11Br2N, exists as a neutral mol-ecule in the asymmetric unit. The asymmetric unit of 4,6-di-bromo-2,3,3-trimethyl-3H-indol-1-ium iodide, C12H14Br2N+·I-, contains one organic cation and one iodine anion. The positive charge is localized on the quaternized nitro-gen atom. In the crystal, mol-ecules of 4,6-di-bromo-indole-nine are linked by C-Br⋯π halogen bonds, forming zigzag chains propagating in the [001] direction. The mol-ecules of the salt form layers parallel to the (010) plane where they are linked by C-H⋯Br hydrogen bonds, C-Br⋯Br and C-Br⋯I halogen bonds. The Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the inter-molecular contacts present in both crystals.

4.
Photodiagnosis Photodyn Ther ; 31: 101866, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32534248

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) is a Gram-positive bacteria and major human pathogen which can cause a wide variety of serious infections when it enters the bloodstream or internal tissues. Antimicrobial photodynamic therapy (APDT) utilizing a light-activated dye (photosensitizer) is a powerful method for in vitro and in vivo eradication of S. aureus and other pathogenic bacteria. However, the development of highly efficient, long-wavelength photosensitizers showing high phototoxicity to pathogens and low dark toxicity is still challenging. AIM: To develop a highly efficient, long-wavelength photosensitizer for photodynamic inactivation of S. aureus. METHOD: Synthesis of the new photosensitizer, hexa-iodinated quinono-cyanine dye IQCy and investigation of the dark and light-induced toxicity of this dye compared to known photosensitizers Chlorin e6 (Ce6) and HITC towards S. aureus. RESULTS: When exposed to 14.9 J/cm2 white LED light, 0.5 µM of IQCy, Ce6 and HITC inactivate, respectively, 99 %, 40 % and 30 % of S. aureus and at 0.05 µM and 27.9 J/cm2 - 71 %, 18 % and 9%, which is much better compared to Ce6 and HITC. IQCy exhibits no dark toxicity at least at 10 µM dye concentration. CONCLUSIONS: IQCy demonstrates a more pronounced photodynamic inactivation of S. aureus as compared to Ce6 and HITC and can be employed for the eradication of these bacteria at lower concentration and reduced light dose.


Subject(s)
Photochemotherapy , Staphylococcal Infections , Hexosaminidase A , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...