Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 87(10): 4394-4415, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36112569

ABSTRACT

Date plum (Diospyrus lotus L.) is an edible fruit from the Ebenaceae family, rich in nutrients, and having tremendous medicinal properties. This paper attempted to show the influence of different parameters of convective drying such as temperature (50, 60, 70, and 80°C) and air velocity (0.5, 1.0, and 1.5 m/s) on the shrinkage and microstructure, rehydration properties, antioxidant activity, and phenolic compounds of date plum. The drying caused significant changes in the color, actual size, and distribution of the fruit cells of date plum. The total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of fresh date plum were 0.81 ± 0.00 mg GAE/g, 0.23 ± 0.10 mg ECE/g, 7.15 ± 1.09 mmol ISE/g, and 14.92 ± 0.88 mmol/TE, respectively. The drying at 70°C had the highest values of TPC, TFC, gallic acid, chlorogenic and syringic acids, catechin, quercetin-3-glucoside, resveratrol, and DPPH. The drying air velocities showed no significant effects on the antioxidant contents and the antioxidant activity. Of the models applied to the drying kinetics, the Midilli model was found as the best model to describe the drying kinetics of date plum. In addition, the Weibull model was found as the most successful among the models applied to the rehydration kinetics of date plum. According to the achieved findings, the convective drying temperature of 70°C is the optimum temperature to produce the dehydrated date plum. Practical Application This work has revealed the drying conditions responsible for preserving the phenolic compounds, total flavonoid content, and antioxidant features of D. lotus L. The study found the optimum drying conditions, and Midilli and Weibull models were the most fitted models to describe the drying and rehydration behaviors of D. lotus L. fruits, respectively. The drying provides a reasonable value of the possibility of continuous consumption of the fruits dried afforded on off-seasons. The dried fruits are widely used for multipurpose and have been extensively used in food industries due to their rich nutraceutical and antioxidant compounds.


Subject(s)
Catechin , Diospyros , Prunus domestica , Antioxidants/analysis , Fruit/chemistry , Prunus domestica/chemistry , Chlorogenic Acid/analysis , Resveratrol/analysis , Catechin/analysis , Plant Extracts/chemistry , Phenols/analysis , Flavonoids/analysis , Fluid Therapy
2.
Foods ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681335

ABSTRACT

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10-10 to 1.55 × 10-10 m2·s-1 for water loss and from 0.72 × 10-10 to 0.62 × 10-10 m2·s-1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.

3.
Foods ; 10(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208732

ABSTRACT

Cornsilk is maize waste containing phenolic compounds. In this study, freeze-drying, spray-drying, and microwave-drying techniques were evaluated for the encapsulation of cornsilk's phenolic compounds using maltodextrin as wall material. The results of antioxidant properties showed that freeze-drying was more efficient than microwave-drying and spray-drying techniques. The highest recovery of phenolic compounds was obtained with freeze-drying. The microstructure, DSC, and FTIR data showed that the encapsulation process was effective, and freeze-drying was the best drying technique. The physical properties of the microparticles greatly changed with the drying techniques. This study revealed that the phenolic compounds of the cornsilk extract can be successfully encapsulated and valorized.

4.
Foods ; 10(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34067938

ABSTRACT

Autumn olive fruits are a rich source of nutrients and functional compounds, making them functional foods against many diseases and cancers. To increase the consumption, its processing, and its transformation into new products would help spread them to the consumer's table. In this study, after giving an overview of the physicochemical characteristics and the antioxidant activity, the objective was to optimize the osmotic dehydration (OD) of the berries. Response surface methodology was used to investigate the effect of dehydration factors: syrup concentration (30-70%), temperature (20-70 °C), and fruit-to-syrup ratio (1:10-2:10) on the water loss (WL), sugar gain (SG), weight reduction (WR), density (ρ), water activity (aw), and total color change (ΔE) of fruits after 10 h of OD. Results obtained by employing Box-Behnken design (three variables, three levels), and significant terms of regression equations indicated that the syrup concentration and temperature variation are the most affecting factors on the previously mentioned independent variables (WL SG, WR, ρ, aw, and ΔE). Fruits to syrup ratio appeared to have a significant effect only on WL. Under the optimum conditions found (70%, 70 °C, 1.8:10), the predicted values were 59.21%. 19.21%, 32.34%, 1.22 g/cm3, 0.850, and 3.65 for WL, SG, WR, ρ, aw, and ΔE, respectively.

5.
Molecules ; 27(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35011365

ABSTRACT

Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an excellent source of anthocyanins and is widely used in various forms due to its biological activities. In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent (NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The results showed that CHGLY was highly efficient compared to the traditional solvents, providing the highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH) and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%, and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound showing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.


Subject(s)
Anthocyanins/chemistry , Borago/chemistry , Plant Extracts/chemistry , Anthocyanins/analysis , Chlorides/chemistry , Choline/chemistry , Deep Eutectic Solvents/chemistry , Flowers/chemistry , Glycerol/chemistry , Hydrolysis , Oxidation-Reduction
6.
Molecules ; 25(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824080

ABSTRACT

Deep eutectic solvents (DESs) have got huge interest as new green and sustainable solvents for the extraction of bioactive compounds from plants in recent decades. In the present study, we aimed to investigate the effectiveness of hydrophilic DES for the extraction of anthocyanin and polyphenol antioxidants from Roselle. A natural hydrophilic DES constituted of sodium acetate (hydrogen bond acceptor) and formic acid (hydrogen bond donor) designed to evaluate the total phenolic compound (TPC), total flavonoid (TFC), total anthocyanin (TACN), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP) values of Roselle. Distilled water, 70% ethanol, and 80% methanol used as conventional solvents for comparison. The results indicated that the DES prepared in molarity ratio (SAFAm) was the most efficient. Subsequently, this prominent DES selected for the optimization and the optimum extraction conditions were 1:3.6 molarity ratio, 0% additional water, and 10 mL solvent. TPC, TFC, TACN, FRAP, and DPPH radical scavenging at the optimum point were 233.26 mg GAE/g, 10.14 mg ECE/g, 10.62 mg D3S/g, 493.45 mmol ISE/g, and 343.41 mmol TE/g, respectively. The stability tests showed that anthocyanins were more stable in SAFAm. These findings revealed that SAFAm is an effective green solvent for the extraction of polyphenols from various plants.


Subject(s)
Anthocyanins/chemistry , Antioxidants/chemistry , Ethanol/chemistry , Hibiscus/chemistry , Methanol/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Drug Stability
7.
Food Chem Toxicol ; 45(8): 1315-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17540490

ABSTRACT

Several plants of the Ericaceae family produce grayanotoxins which can poison humans. The best-known of these intoxications involves the eating of 'mad honey (deli bal in Turkish)' contaminated by Rhododendron nectar grayanotoxins. Accounts of mad honey intoxication date back to 401 BC. It is still one of the common food intoxications encountered for humans and livestock in Turkey. Mad honey intoxication's symptoms are dose-related. In mild form, dizziness, weakness, excessive perspiration, hypersalivation, nausea, vomiting and paresthesias are present and close follow-up is enough. However, severe intoxication may lead to life threatening cardiac complications such as complete atrioventricular block that can be treated intravenously. In this review, properties and sources of grayanotoxins, their detection methods and mad honey intoxication are discussed.


Subject(s)
Diterpenes/poisoning , Food Contamination , Honey/poisoning , Rhododendron , Animals , Diterpenes/analysis , Foodborne Diseases/etiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...