Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 514: 37-49, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38885804

ABSTRACT

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Subject(s)
Drosophila Proteins , Receptors, Notch , Signal Transduction , Wings, Animal , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Receptors, Notch/metabolism , Wings, Animal/metabolism , Wings, Animal/embryology , Wings, Animal/growth & development , Gene Expression Regulation, Developmental , Protein Binding , Drosophila melanogaster/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Eye/embryology , Eye/metabolism , Eye/growth & development , Drosophila/metabolism , Drosophila/embryology , Cell Polarity , Intracellular Signaling Peptides and Proteins
2.
Cell Rep ; 41(10): 111788, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476875

ABSTRACT

A collective cell motility event that occurs during Drosophila eye development, ommatidial rotation (OR), serves as a paradigm for signaling-pathway-regulated directed movement of cell clusters. OR is instructed by the EGFR and Notch pathways and Frizzled/planar cell polarity (Fz/PCP) signaling, all of which are associated with photoreceptor R3 and R4 specification. Here, we show that Abl kinase negatively regulates OR through its activity in the R3/R4 pair. Abl is localized to apical junctional regions in R4, but not in R3, during OR, and this apical localization requires Notch signaling. We demonstrate that Abl and Notch interact genetically during OR, and Abl co-immunoprecipitates in complexes with Notch in eye discs. Perturbations of Abl interfere with adherens junctional organization of ommatidial preclusters, which mediate the OR process. Together, our data suggest that Abl kinase acts directly downstream of Notch in R4 to fine-tune OR via its effect on adherens junctions.


Subject(s)
Drosophila , Animals , Cell Movement
4.
Mol Psychiatry ; 27(12): 5007-5019, 2022 12.
Article in English | MEDLINE | ID: mdl-36447010

ABSTRACT

Tourette Syndrome (TS) is a neuropsychiatric disorder thought to involve a reduction of basal ganglia (BG) interneurons and malfunctioning of the BG circuitry. However, whether interneurons fail to develop or are lost postnatally remains unknown. To investigate the pathophysiology of early development in TS, induced pluripotent stem cell (iPSC)-derived BG organoids from TS patients and healthy controls were compared on multiple levels of measurement and analysis. BG organoids from TS individuals manifested an impaired medial ganglionic eminence fate and a decreased differentiation of cholinergic and GABAergic interneurons. Transcriptome analyses revealed organoid mispatterning in TS, with a preference for dorsolateral at the expense of ventromedial fates. Our results point to altered expression of GLI transcription factors downstream of the Sonic Hedgehog signaling pathway with cilia disruption at the earliest stages of BG organoid differentiation as a potential mechanism for the BG mispatterning in TS. This study uncovers early neurodevelopmental underpinnings of TS neuropathological deficits using organoids as a model system.


Subject(s)
Tourette Syndrome , Humans , Tourette Syndrome/metabolism , Hedgehog Proteins/metabolism , Basal Ganglia/pathology , Interneurons/metabolism , Organoids/metabolism
5.
Curr Top Dev Biol ; 150: 255-297, 2022.
Article in English | MEDLINE | ID: mdl-35817505

ABSTRACT

The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.


Subject(s)
Cell Polarity , Drosophila Proteins , Animals , Cell Movement , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Vertebrates/metabolism , Wnt Signaling Pathway/physiology
6.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 3022-3027, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34277384

ABSTRACT

There is no routinely determined treatment for olfactory dysfunction because of COVID-19. Saline irrigation and nasal corticosteroid treatments are safe and inexpensive methods, and have low side effects. In our study, we argue that saline nasal irrigation and topical corticosteroid treatment can be used in the treatment of patients with olfactory loss in all areas of rhinology. A total of 150 patients who admitted to our clinic with other symptoms or with only acute odor loss, diagnosed with COVID-19 with RT-PCR were divided into 3 equal groups.Fifty patients in Group 1 were not given any extra treatments. The other 50 patients in Group 2 were given saline irrigation for treatment; and the 50 people in Group 3 were given both saline irrigation and nasal steroid spray for treatment. The "Subjective Olfactory Capability (SOC)" was used for olfactory function evaluation of patients. Self-Rating Olfactory Score (SROS), and Olfactory Dysfunction Duration (ODD) were recorded on the 1st, 15th and 30th days. SROS of the group receiving Nasal Saline + Triamcinolone Acetonide treatment on the 30th day was significantly higher than in other groups ( p -1-3 = 0.018,  p 2-3  = 0.033). Also, the ODD was significantly reduced in this group compared to other groups ( p -1-3  = 0.022,  p 2-3  = 0.028,). Topical triamcinolone treatment was found to be successful in the treatment of olfactory dysfunction due to COVID-19. Nasal steroids, which are both inexpensive and have low side effect profiles, can be used safely in the treatment of patients with olfactory losses.

7.
Sci Rep ; 9(1): 18628, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819141

ABSTRACT

In all metazoans, a small number of evolutionarily conserved signaling pathways are reiteratively used during development to orchestrate critical patterning and morphogenetic processes. Among these, Notch (N) signaling is essential for most aspects of tissue patterning where it mediates the communication between adjacent cells to control cell fate specification. In Drosophila, Notch signaling is required for several features of eye development, including the R3/R4 cell fate choice and R7 specification. Here we show that hypomorphic alleles of Notch, belonging to the Nfacet class, reveal a novel phenotype: while photoreceptor specification in the mutant ommatidia is largely normal, defects are observed in ommatidial rotation (OR), a planar cell polarity (PCP)-mediated cell motility process. We demonstrate that during OR Notch signaling is specifically required in the R4 photoreceptor to upregulate the transcription of argos (aos), an inhibitory ligand to the epidermal growth factor receptor (EGFR), to fine-tune the activity of EGFR signaling. Consistently, the loss-of-function defects of Nfacet alleles and EGFR-signaling pathway mutants are largely indistinguishable. A Notch-regulated aos enhancer confers R4 specific expression arguing that aos is directly regulated by Notch signaling in this context via Su(H)-Mam-dependent transcription.


Subject(s)
Drosophila Proteins/genetics , ErbB Receptors/genetics , Eye Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, Invertebrate Peptide/genetics , Receptors, Notch/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Polarity/genetics , Drosophila melanogaster/genetics , Eye/metabolism , Frizzled Receptors/genetics , Morphogenesis/genetics , Photoreceptor Cells, Invertebrate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...