Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(15): 2105-2115, 2017 04.
Article in English | MEDLINE | ID: mdl-27775078

ABSTRACT

Deletion or mutation of the gene encoding the deubiquitinating enzyme CYLD is a common genomic aberration in multiple myeloma (MM). However, the functional consequence of CYLD loss and the mechanism underlying its putative role as a tumor suppressor gene in the pathogenesis of MM has not been established. Here, we show that CYLD expression is highly variable in myeloma cell lines and primary MMs and that low CYLD expression is associated with disease progression from monoclonal gammopathy of undetermined significance to MM, and with poor overall and progression free-survival of MM patients. Functional assays revealed that CYLD represses MM cell proliferation and survival. Furthermore, CYLD acts as a negative regulator of NF-κB and Wnt/ß-catenin signaling and loss of CYLD sensitizes MM cells to NF-κB-stimuli and Wnt ligands. Interestingly, in primary MMs, low CYLD expression strongly correlated with a proliferative and Wnt signaling-gene expression signature, but not with an NFκB target gene signature. Altogether, our findings identify CYLD as a negative regulator of NF-κB and Wnt/ß-catenin signaling in MM and indicate that loss of CYLD enhances MM aggressiveness through Wnt pathway activation. Thus, targeting the Wnt pathway could be a promising therapeutic strategy in MM with loss of CYLD activity.


Subject(s)
Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tumor Suppressor Proteins/deficiency , Wnt Signaling Pathway , Case-Control Studies , Deubiquitinating Enzyme CYLD , Humans , Multiple Myeloma/genetics , NF-kappa B/metabolism , Transfection , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Leukemia ; 27(8): 1729-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23478664

ABSTRACT

In multiple myeloma (MM), angiogenesis is strongly correlated to disease progression and unfavorable outcome, and may be promoted by bone marrow hypoxia. Employing gene-expression profiling, we here identified the pro-angiogenic factor adrenomedullin (AM) as the most highly upregulated gene in MM cells exposed to hypoxia. Malignant plasma cells from the majority of MM patients, belonging to distinct genetic subgroups, aberrantly express AM. Already under normoxic conditions, a subset of MM highly expressed and secreted AM, which could not be further enhanced by hypoxia or cobalt chloride-induced stabilization of hypoxia-inducible factor (HIF)1α. In line with this, expression of AM did not correlate with expression of a panel of established hypoxia-/HIF1α-target genes in MM patients. We demonstrate that MM-driven promotion of endothelial cell proliferation and tube formation is augmented by inducible expression of AM and strongly repressed by inhibition of endogenous and hypoxia-induced AM activity. Together, our results demonstrate that MM cells, both in a hypoxia-dependent and -independent fashion, aberrantly express and secrete AM, which can mediate MM-induced angiogenesis. Thus, AM secretion can be a major driving force for the angiogenic switch observed during MM evolution, which renders AM a putative target for MM therapy.


Subject(s)
Adrenomedullin/genetics , Gene Expression Regulation, Neoplastic , Hypoxia/genetics , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Disease Progression , Gene Expression Profiling , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Multiple Myeloma/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...