Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 21(4): 946-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26169835

ABSTRACT

Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.

2.
Nat Commun ; 4: 2288, 2013.
Article in English | MEDLINE | ID: mdl-23912894

ABSTRACT

The formation of voids in an irradiated material significantly degrades its physical and mechanical properties. Void nucleation and growth involve discrete atomic-scale processes that, unfortunately, are not yet well understood due to the lack of direct experimental examination. Here we report an in-situ atomic-scale observation of the nucleation and growth of voids in hexagonal close-packed magnesium under electron irradiation. The voids are found to first grow into a plate-like shape, followed by a gradual transition to a nearly equiaxial geometry. Using atomistic simulations, we show that the initial growth in length is controlled by slow nucleation kinetics of vacancy layers on basal facets and anisotropic vacancy diffusivity. The subsequent thickness growth is driven by thermodynamics to reduce surface energy. These experiments represent unprecedented resolution and characterization of void nucleation and growth under irradiation, and might help with understanding the irradiation damage of other hexagonal close-packed materials.

3.
Nanotechnology ; 19(13): 135603, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-19636152

ABSTRACT

The inexpensive combination of cryogenically milled Cu(3)Ge powders sonochemically processed in a standard ultrasonic cleaner has led to the prototype of a heretofore undescribed class of material. This prototype is a nanostructured composite composed of 4.5 nm diameter Cu nanocrystals embedded in a three-dimensional (3D) amorphous CuGeO(3) polyhedron web matrix. The diameters of the wires comprising the matrix are typically 5-15 nm. Complete structural and compositional characterization is reported to provide additional insight and firm designation on the observation of this previously undescribed class of material. The large surface to volume ratio of these nanoweb composites may offer unique advantages based on altered optical or electronic and magnetic properties. For example, quantum confinement of the Cu dots in the amorphous 3D nanowebs is possible. Nanostructures in general have altered properties compared to those of bulk materials and the same is expected in nanostructured composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...