Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37824826

ABSTRACT

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

2.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37659415

ABSTRACT

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Subject(s)
Arabidopsis , Brassicaceae , Phylogeny , Brassicaceae/genetics , Arabidopsis/genetics , Biodiversity
3.
PhytoKeys ; 220: 127-144, 2023.
Article in English | MEDLINE | ID: mdl-37251613

ABSTRACT

Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.

4.
Ann Bot ; 130(2): 245-263, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35789248

ABSTRACT

BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.


Subject(s)
Cardamine , Bayes Theorem , Cardamine/genetics , Phylogeny , Polyploidy , Reproduction
5.
Nat Commun ; 13(1): 1461, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304466

ABSTRACT

Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , MADS Domain Proteins/genetics , Mutation
6.
Mol Ecol Resour ; 22(2): 468-486, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34415668

ABSTRACT

Many model organisms were chosen and achieved prominence because of an advantageous combination of their life-history characteristics, genetic properties and also practical considerations. Discoveries made in Arabidopsis thaliana, the most renowned noncrop plant model species, have markedly stimulated studies in other species with different biology. Within the family Brassicaceae, the arctic-alpine Arabis alpina has become a model complementary to Arabidopsis thaliana to study the evolution of life-history traits, such as perenniality, and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including genomic aspects, the diversification of its mating system and demographic properties, and we discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. From this published knowledge, we derive open questions that might inspire future research in A. alpina, other Brassicaceae species or more distantly related plant families.


Subject(s)
Arabidopsis , Arabis , Brassicaceae , Arabis/genetics , Brassicaceae/genetics , Genomics , Humans , Reproduction
7.
PhytoKeys ; 196: 91-214, 2022.
Article in English | MEDLINE | ID: mdl-36762028

ABSTRACT

In this study, we present an overall phylogenetic framework for Dianthus using four plastid regions (matK-trnK-psbA, rpl32-trnL, trnQ-rps16) and nuclear ITS and a species-level checklist for the genus developed by using all available databases and the literature. The trees from the plastid dataset depict a clade of Dianthus that also includes Velezia and a few taxa of Petrorhagia. New combinations in Dianthus are provided for these species. The checklist of Dianthus in this new delimitation covers 1781 names, with 384 accepted species, 150 subspecies, 12 heterotypic varieties and two forms (not counting autonyms), 1050 synonyms, 22 hybrid names and 172 unresolved names, 3 names were excluded. Implications for the evolution of flower characters, life forms, biogeography, as well as sectional classification are discussed based on the phylogenetic framework.

8.
Elife ; 102021 12 21.
Article in English | MEDLINE | ID: mdl-34930524

ABSTRACT

With accelerating global warming, understanding the evolutionary dynamics of plant adaptation to environmental change is increasingly urgent. Here, we reveal the enigmatic history of the genus Cochlearia (Brassicaceae), a Pleistocene relic that originated from a drought-adapted Mediterranean sister genus during the Miocene. Cochlearia rapidly diversified and adapted to circum-Arctic regions and other cold-characterized habitat types during the Pleistocene. This sudden change in ecological preferences was accompanied by a highly complex, reticulate polyploid evolution, which was apparently triggered by the impact of repeated Pleistocene glaciation cycles. Our results illustrate that two early diversified Arctic-alpine diploid gene pools contributed differently to the evolution of this young polyploid genus now captured in a cold-adapted niche. Metabolomics revealed central carbon metabolism responses to cold in diverse species and ecotypes, likely due to continuous connections to cold habitats that may have facilitated widespread adaptation to alpine and subalpine habitats, and which we speculate were coopted from existing drought adaptations. Given the growing scientific interest in the adaptive evolution of temperature-related traits, our results provide much-needed taxonomic and phylogenomic resolution of a model system as well as first insights into the origins of its adaptation to cold.


Subject(s)
Adaptation, Biological , Biological Evolution , Brassicaceae/genetics , Cold Temperature , Global Warming , Polyploidy , Evolution, Molecular , Gene Pool
9.
Appl Plant Sci ; 9(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34336398

ABSTRACT

PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.

10.
Phytochemistry ; 185: 112658, 2021 May.
Article in English | MEDLINE | ID: mdl-33744557

ABSTRACT

A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.


Subject(s)
Barbarea , Brassicaceae , Resedaceae , Barbarea/genetics , Brassicaceae/genetics , Chromatography, High Pressure Liquid , Europe , Glucosinolates , Phylogeny , Tandem Mass Spectrometry
11.
Phytochemistry ; 185: 112668, 2021 May.
Article in English | MEDLINE | ID: mdl-33743499

ABSTRACT

We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the ß-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.


Subject(s)
Barbarea , Brassicaceae , Acylation , Brassicaceae/genetics , Glucosinolates , Phylogeny
13.
Ecol Evol ; 10(23): 13260-13274, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304535

ABSTRACT

Ecosystem dry limits have been studied in the context of species biology, fitness, and interactions with biotic and abiotic parameters, but the interactive effects of these parameters remain underexplored. Therefore, information on the putative effects of global climate change on these ecosystems is often lacking.We analyzed the interplay between fine-scale landscape genetics and biotic and abiotic factors of terrestrial Tillandsia lomas in the hyperarid Atacama Desert, characterized by a fog-dependent vegetation type almost entirely dominated by one single vascular plant species.We showed that metapopulations of Tillandsia landbeckii are genetically connected over many hundreds of square kilometers, and despite having a large potential for clonal propagation, genetic diversity is regionally and locally structured. At the landscape level, genetic diversity correlates well with fitness parameters such as growth, flowering, and vegetation density. We also observed fine-scale correlation with a 3-D landscape model indicating a positive feedback with seasonal fog occurrence and availability. The various interactions of biotic and abiotic factors resulted in regular linear banding patterns of vegetation arranged orthogonally toward the landscape slope. Ex situ growth experiments indicated that T. landbeckii grows at optimal rates in this extreme hyperarid environment, and we can extrapolate mean biomass production for this ecosystem. Synthesis. Our results suggest that the unique ecosystem of terrestrial Tillandsia lomas in the hyperarid Atacama Desert is an evolutionarily balanced and fine-scaled system. The vegetation itself is composed of long-lived and persistent modules. We developed a descriptive model of the various interacting factors, thereby also highlighting the severe threat caused by global climate change potentially associated with fog disturbance patterns along the Chilean Pacific coast.

14.
Nat Commun ; 11(1): 3795, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732942

ABSTRACT

Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.


Subject(s)
Biological Evolution , Brassicaceae/classification , Brassicaceae/genetics , Evolution, Molecular , Genome, Plant/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Phylogeny
15.
BMC Plant Biol ; 20(1): 111, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32164546

ABSTRACT

BACKGROUND: The angiosperm family Bromeliaceae comprises over 3.500 species characterized by exceptionally high morphological and ecological diversity, but a very low genetic variation. In many genera, plants are vegetatively very similar which makes determination of non flowering bromeliads difficult. This is particularly problematic with living collections where plants are often cultivated over decades without flowering. DNA barcoding is therefore a very promising approach to provide reliable and convenient assistance in species determination. However, the observed low genetic variation of canonical barcoding markers in bromeliads causes problems. RESULT: In this study the low-copy nuclear gene Agt1 is identified as a novel DNA barcoding marker suitable for molecular identification of closely related bromeliad species. Combining a comparatively slowly evolving exon sequence with an adjacent, genetically highly variable intron, correctly matching MegaBLAST based species identification rate was found to be approximately double the highest rate yet reported for bromeliads using other barcode markers. CONCLUSION: In the present work, we characterize Agt1 as a novel plant DNA barcoding marker to be used for barcoding of bromeliads, a plant group with low genetic variation. Moreover, we provide a comprehensive marker sequence dataset for further use in the bromeliad research community.


Subject(s)
Bromeliaceae/genetics , DNA Barcoding, Taxonomic , DNA, Plant/genetics , Plant Proteins/genetics , Bromeliaceae/classification
16.
Ann Bot ; 126(1): 103-118, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32211750

ABSTRACT

BACKGROUND AND AIMS: Bristol rock cress is among the few plant species in the British Isles considered to have a Mediterranean-montane element. Spatiotemporal patterns of colonization of the British Isles since the last interglacial and after the Last Glacial Maximum (LGM) from mainland Europe are underexplored and have not yet included such floristic elements. Here we shed light on the evolutionary history of a relic and outpost metapopulation of Bristol rock cress in the south-western UK. METHODS: Amplified fragment length polymorphisms (AFLPs) were used to identify distinct gene pools. Plastome assembly and respective phylogenetic analysis revealed the temporal context. Herbarium material was largely used to exemplify the value of collections to obtain a representative sampling covering the entire distribution range. KEY RESULTS: The AFLPs recognized two distinct gene pools, with the Iberian Peninsula as the primary centre of genetic diversity and the origin of lineages expanding before and after the LGM towards mountain areas in France and Switzerland. No present-day lineages are older than 51 ky, which is in sharp contrast to the species stem group age of nearly 2 My, indicating severe extinction and bottlenecks throughout the Pleistocene. The British Isles were colonized after the LGM and feature high genetic diversity. CONCLUSIONS: The short-lived perennial herb Arabis scabra, which is restricted to limestone, has expanded its distribution range after the LGM, following corridors within an open landscape, and may have reached the British Isles via the desiccated Celtic Sea at about 16 kya. This study may shed light on the origin of other rare and peculiar species co-occurring in limestone regions in the south-western British Isles.


Subject(s)
Arabis/genetics , Brassicaceae/genetics , Europe , France , Genetic Variation , Haplotypes , Phylogeny , Phylogeography , Sequence Analysis, DNA , Switzerland , United Kingdom
17.
BMC Evol Biol ; 20(1): 11, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969115

ABSTRACT

BACKGROUND: The CO2-concentrating mechanism associated to Crassulacean acid metabolism (CAM) alters the catalytic context for Rubisco by increasing CO2 availability and provides an advantage in particular ecological conditions. We hypothesized about the existence of molecular changes linked to these particular adaptations in CAM Rubisco. We investigated molecular evolution of the Rubisco large (L-) subunit in 78 orchids and 144 bromeliads with C3 and CAM photosynthetic pathways. The sequence analyses were complemented with measurements of Rubisco kinetics in some species with contrasting photosynthetic mechanism and differing in the L-subunit sequence. RESULTS: We identified potential positively selected sites and residues with signatures of co-adaptation. The implementation of a decision tree model related Rubisco specific variable sites to the leaf carbon isotopic composition of the species. Differences in the Rubisco catalytic traits found among C3 orchids and between strong CAM and C3 bromeliads suggested Rubisco had evolved in response to differing CO2 concentration. CONCLUSIONS: The results revealed that the variability in the Rubisco L-subunit sequence in orchids and bromeliads is composed of coevolving sites under potential positive adaptive signal. The sequence variability was related to δ13C in orchids and bromeliads, however it could not be linked to the variability found in the kinetic properties of the studied species.


Subject(s)
Bromeliaceae/enzymology , Carbon/metabolism , Evolution, Molecular , Orchidaceae/enzymology , Ribulose-Bisphosphate Carboxylase/genetics , Adaptation, Physiological , Carbon Isotopes/metabolism , Kinetics , Photosynthesis , Phylogeny , Plant Leaves/genetics , Protein Subunits/metabolism , Selection, Genetic
18.
Plant Cell ; 32(3): 650-665, 2020 03.
Article in English | MEDLINE | ID: mdl-31919297

ABSTRACT

Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.


Subject(s)
Brassicaceae/genetics , Centromere/genetics , Evolution, Molecular , Genome, Plant , Chromosomes, Plant/genetics , Karyotype , Phylogeny , Tandem Repeat Sequences/genetics
19.
Ann Bot ; 125(1): 29-47, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31314080

ABSTRACT

BACKGROUND AND AIMS: Whole-genome duplication (WGD) events are considered important driving forces of diversification. At least 11 out of 52 Brassicaceae tribes had independent mesopolyploid WGDs followed by diploidization processes. However, the association between mesopolyploidy and subsequent diversification is equivocal. Herein we show the results from a family-wide diversification analysis on Brassicaceae, and elaborate on the hypothesis that polyploidization per se is a fundamental driver in Brassicaceae evolution. METHODS: We established a time-calibrated chronogram based on whole plastid genomes comprising representative Brassicaceae taxa and published data spanning the entire Rosidae clade. This allowed us to set multiple calibration points and anchored various Brassicaceae taxa for subsequent downstream analyses. All major splits among Brassicaceae lineages were used in BEAST analyses of 48 individually analysed tribes comprising 2101 taxa in total using the internal transcribed spacers of nuclear ribosomal DNA. Diversification patterns were investigated on these tribe-wide chronograms using BAMM and were compared with family-wide data on genome size variation and species richness. KEY RESULTS: Brassicaceae diverged 29.9 million years ago (Mya) during the Oligocene, and the majority of tribes started diversification in the Miocene with an average crown group age of about 12.5 Mya. This matches the cooling phase right after the Mid Miocene climatic optimum. Significant rate shifts were detected in 12 out of 52 tribes during the Mio- and Pliocene, decoupled from preceding mesopolyploid WGDs. Among the various factors analysed, the combined effect of tribal crown group age and net diversification rate (speciation minus extinction) is likely to explain sufficiently species richness across Brassicaceae tribes. CONCLUSIONS: The onset of the evolutionary splits among tribes took place under cooler and drier conditions. Pleistocene glacial cycles may have contributed to the maintenance of high diversification rates. Rate shifts are not consistently associated with mesopolyploid WGD. We propose, therefore, that WGDs in general serve as a constant 'pump' for continuous and high species diversification.


Subject(s)
Brassicaceae , Magnoliopsida , Evolution, Molecular , Phylogeny
20.
PhytoKeys ; 135: 119-131, 2019.
Article in English | MEDLINE | ID: mdl-31849563

ABSTRACT

Zahora ait-atta Lemmel & M.Koch, a new species from the Moroccan Sahara, is described and documented here and constitutes a monotypic new genus. The new taxon belongs to the tribe Brassiceae (Brassicaceae), and cytogenetic and phylogenetic analyses reveal that this diploid species has a remote status of Miocene origin in the northwestern Sahara Desert. We examined the morphological differences between morphologically related genera and provide photographs of the new species. The new genus may play a key role in future Brassica-Raphanus crop research since it is placed phylogenetically at the base of a generically highly diverse clade including Raphanus sativus, and it shows affinities to various Brassica species.

SELECTION OF CITATIONS
SEARCH DETAIL
...