Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Transbound Emerg Dis ; 69(4): 1691-1694, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35243797

ABSTRACT

Coronaviruses are causing severe respiratory and enteric diseases in humans and animals. Here, we report an outbreak of equine coronavirus disease in adult horses, detected by a voluntary syndromic surveillance scheme for equine diseases in Switzerland. This scheme allowed a rapid concerted action to diagnose and contain the disease.


Subject(s)
Betacoronavirus 1 , Coronavirus Infections , Coronavirus , Horse Diseases , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Disease Outbreaks/veterinary , Horses , Humans , Switzerland/epidemiology
4.
Retrovirology ; 18(1): 40, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930327

ABSTRACT

BACKGROUND: The majority of emerging infectious diseases in humans are of animal origin, and many of them are caused by neuropathogenic viruses. Many cases of neurological disease and encephalitis in livestock remain etiologically unresolved, posing a constant threat to animal and human health. Thus, continuous extension of our knowledge of the repertoire of viruses prone to infect the central nervous system (CNS) is vital for pathogen monitoring and the early detection of emerging viruses. Using high-throughput sequencing (HTS) and bioinformatics, we discovered a new retrovirus, bovine retrovirus CH15 (BoRV CH15), in the CNS of a cow with non-suppurative encephalitis. Phylogenetic analysis revealed the affiliation of BoRV CH15 to the genus Betaretrovirus. RESULTS: BoRV CH15 genomes were identified prospectively and retrospectively by PCR, RT-PCR, and HTS, with targeting of viral RNA and proviral DNA, in six additional diseased cows investigated over a period of > 20 years and of different geographical origins. The virus was not found in brain samples from healthy slaughtered control animals (n = 130). We determined the full-length proviral genomes from six of the seven investigated animals and, using in situ hybridization, identified viral RNA in the cytoplasm of cells morphologically compatible with neurons in diseased brains. CONCLUSIONS: Further screening of brain samples, virus isolation, and infection studies are needed to estimate the significance of these findings and the causative association of BoRV CH15 with neurological disease and encephalitis in cattle. However, with the full-length proviral sequences of BoRV CH15 genomes, we provide the basis for a molecular clone and further in vitro investigation.


Subject(s)
Betaretrovirus , Encephalitis , Viruses , Animals , Cattle , Female , Phylogeny , Retrospective Studies
5.
Emerg Infect Dis ; 27(12): 3082-3091, 2021 12.
Article in English | MEDLINE | ID: mdl-34808081

ABSTRACT

European perch (Perca fluviatilis) are increasingly farmed as a human food source. Viral infections of European perch remain largely unexplored, thereby putting farm populations at incalculable risk for devastating fish epizootics and presenting a potential hazard to consumers. To address these concerns, we applied metatranscriptomics to identify disease-associated viruses in European perch farmed in Switzerland. Unexpectedly, in clinically diseased fish we detected novel freshwater fish filoviruses, a novel freshwater fish hantavirus, and a previously unknown rhabdovirus. Hantavirus titers were high, and we demonstrated virus in macrophages and gill endothelial cells by using in situ hybridization. Rhabdovirus titers in organ samples were low, but virus could be isolated on cell culture. Our data add to the hypothesis that filoviruses, hantaviruses, and rhabdoviruses are globally distributed common fish commensals, pathogens, or both. Our findings shed new light on negative-sense RNA virus diversity and evolution.


Subject(s)
Filoviridae , Fish Diseases , Orthohantavirus , Rhabdoviridae , Animals , Endothelial Cells , Fish Diseases/epidemiology , Fresh Water , Humans , Phylogeny , Rhabdoviridae/genetics , Switzerland/epidemiology
6.
Vet Microbiol ; 256: 109047, 2021 May.
Article in English | MEDLINE | ID: mdl-33866081

ABSTRACT

Hypomyelination is a rare consequence of in utero bovine viral diarrhoea virus (BVDV) infection. We describe a BVDV outbreak in a naïve Holstein dairy herd in northern Italy, with an unusually high prevalence of calves with neurological signs, generalised tremors and ataxia. Histological analysis showed that hypomyelination was the predominant lesion and that the most typical BVDV neuropathological findings (e.g. cerebellar hypoplasia) were absent. Virological and molecular analyses showed that non-cytopathic BVDV genotype 1b was associated with the calves' neurological signs and excluded other viruses responsible for congenital infection or neurological disorders. Whole-genome sequencing of BVDVs from the brain of a calf with neurological signs and the whole blood of a persistently infected herd-mate with no such sign showed >99.7 % sequence identity. Analysis of the quasispecies distribution revealed the greatest variation rates in regions coding for the structural proteins E1 and E2. Variation was slightly greater in the brain- than in the blood-derived sequence and occurred at different sites, suggesting the occurrence of distinct evolutionary processes in the two persistently infected calves. Molecular characterisation of BVDV genomes from five other calves with neurological signs from the same farm confirmed that the E1 and E2 regions were the most variable. Several factors, including genetic variability and host factors, appear to have contributed to the observed unique BVDV disease phenotype, characterised by hypomyelination and neurological signs.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Diarrhea Virus 1, Bovine Viral/immunology , Disease Outbreaks/veterinary , Genome, Viral/genetics , Tremor/veterinary , Animals , Animals, Newborn , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Female , Genotype , Male , Phenotype , Tremor/congenital , Tremor/epidemiology , Whole Genome Sequencing/veterinary
7.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806013

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

8.
Pathogens ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751201

ABSTRACT

Tissues from two cows with neurological signs that were admitted to the Vetsuisse Faculty under suspicion of rabies and bovine spongiform encephalopathy (BSE), respectively, were further analyzed for this case report. After histopathological examination and exclusion of BSE and rabies, the animals were diagnosed with etiologically unresolved disseminated non-suppurative encephalitis. Using next-generation sequencing, we detected the full genome of bovine polyomavirus 2 (BoPyV2) in brain samples from both animals. This virus has been identified in beef samples in three independent studies conducted in the United States and Germany, but has not been linked to any disease. Analysis of the two new BoPyV2 genome sequences revealed close phylogenetic relationships to one another and to BoPyV2 isolates detected in beef samples. In situ hybridization demonstrated the presence of viral nucleic acid in all investigated brain areas and in areas with signs of inflammation in both animals. Thus, we provide the first evidence that BoPyV2 is a probable cause of non-suppurative encephalitis in cattle, and encourage further molecular and serological testing to elucidate the disease's epidemiology, as well as experimental transmission studies to prove causality between the infection and disease.

10.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: mdl-33396858

ABSTRACT

An 8-year-old alpaca was admitted to the emergency service of the Clinic for Ruminants in Bern due to a reduced general condition and progressive neurological signs. Despite supportive treatment, its condition deteriorated and the animal had to be euthanized. Histopathological analysis revealed a severe non-suppurative polioencephalomyelitis with neuronal necrosis, most likely of viral origin. We detected abundant neuronal labelling with antibodies directed against two different epitopes of Bovine Astrovirus CH13/NeuroS1 (BoAstV-CH13/NeuroS1), which is a common viral agent associated with non-suppurative encephalitis in Swiss cattle. These findings were further verified by detection of viral RNA by use of in-situ hybridization and real-time RT-PCR. Next generation sequencing revealed that the detected virus genome had a pairwise identity of 98.9% to the genome of BoAstV-CH13/NeuroS1. To our knowledge, this is the first report of an astrovirus-associated polioencephalomyelitis in an alpaca. These results point to the possibility of an interspecies transmission of BoAstV-CH13/NeuroS1.


Subject(s)
Astroviridae Infections/veterinary , Astroviridae , Cattle Diseases/diagnosis , Cattle Diseases/virology , Poliomyelitis/veterinary , Animals , Astroviridae/genetics , Biopsy , Brain/pathology , Brain/virology , Cattle , Immunohistochemistry , In Situ Hybridization , RNA, Viral , Real-Time Polymerase Chain Reaction
11.
PeerJ ; 7: e7338, 2019.
Article in English | MEDLINE | ID: mdl-31396439

ABSTRACT

Astroviruses (AstV) are single-stranded, positive-sense RNA viruses, best known for causing diarrhea in humans and are also found in many other mammals; in those, the relevance in gastroenteritis remains unclear. Recently described neurotropic AstV showed associations with encephalitis in humans as well as in other mammals. In Switzerland, two different neurotropic AstV were identified in cattle, as well as one in a sheep. The high genetic similarity between the ovine and one of the bovine AstV strengthens the hypothesis of an interspecies transmission. In humans, AstV associated with encephalitis were found also in human stool samples, suggesting that in these patients the infection spreads from the gastrointestinal tract to the brain under certain conditions, such as immunosuppression. Whether a similar pathogenesis occurs in ruminants remains unknown. The aims of this study were (1) the investigation of the potential occurrence of neurotropic AstV in feces samples, (2) the discovery and analysis of so far unknown AstV in small ruminants and other ruminant species' fecal samples and (3) the examination of a potential interspecies transmission of AstV. To achieve these aims, RNA extraction out of 164 fecal samples from different ruminant species was performed and all samples were screened for known neurotropic AstV occurring in Switzerland, as well as for various AstV using RT-PCR. Positive tested samples were submitted to next generation sequencing. The generated sequences were compared to nucleotide- and amino acid databases, virus properties were identified, and phylogenetic analyses as well as recombination analysis were performed. The excretion of neurotropic AstV in small ruminants' feces could not be demonstrated, but this work suggests the first identification of AstV in goats as well as the discovery of multiple and highly diverse new genetic variants in small ruminants, which lead to a classification into novel genotype-species. Additionally, the prediction of multiple recombination events in four of five newly discovered full or almost full-length genome sequences suggests a plausible interspecies transmission. The findings point out the occurrence and fecal shedding of previously unknown AstV in sheep and goats and pave the way towards a better understanding of the diversity and transmission of AstV in small ruminants.

12.
Front Vet Sci ; 6: 51, 2019.
Article in English | MEDLINE | ID: mdl-30886851

ABSTRACT

In mammals, the small, positive-sense single-stranded RNA astroviruses are known as being mostly enterotropic and host-specific. Over the past years, however, they were identified several times in central nervous system tissues of humans, minks, cattle, sheep, and pigs with nonsuppurative inflammatory disease of that organ system. We recently reported such neurotropic astroviruses, amongst which bovine astrovirus CH15 (BoAstV-CH15) in two cows, and ovine astrovirus CH16 (OvAstV-CH16) in a sheep, which were genetically almost identical to one another. In order to investigate the occurrence of this virus species in Switzerland over time, we selected formalin-fixed, paraffin-embedded (FFPE) brain tissues of small ruminants diagnosed with severe encephalitis between 1969 and 2012 and screened those by immunohistochemistry for the capsid protein of BoAstV-CH15/OvAstV-CH16. We found one sheep, which died in 1992, that displayed positive immunostaining in various brain regions, and observed that immunostained cells were generally co-localized with the strongest histopathological lesions. We confirmed the virus presence with a second immunohistochemical protocol and demonstrated its close genetic relationship to other BoAstV-CH15/ OvAstV-CH16 strains by next-generation sequencing of an RNA extract from FFPE brain material. Our findings demonstrate that astrovirus BoAstV-CH15/OvAstV-CH16 existed in Switzerland already more than 2 decades ago and underline again the close relationship of the bovine and ovine strains of this virus.

13.
Sci Rep ; 8(1): 9215, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907784

ABSTRACT

A novel bovine astrovirus genotype species (BoAstV-CH13/NeuroS1) was recently identified in brain tissues of cattle as a plausible cause of encephalitis. The purpose of the present study was to develop and validate real time RT-PCR assays for the detection of BoAstV-CH13/NeuroS1 in brain tissues of cattle. Three different primer-probe combinations were designed based on BoAstV-CH13/NeuroS1 full-genome sequences of 11 different strains identified in cattle, and established in three distinct one-step real time RT-PCR protocols. These protocols were compared regarding their diagnostic performance using brain tissues of cattle with and without astrovirus associated encephalitis. The limit of detection (LOD) of all three assays was between 1.34 × 101 and 1.34 × 102 RNA copies, leading to an analytical sensitivity two orders of magnitude superior compared to a conventional pan-astrovirus RT-PCR protocol (LOD 1.31 × 104 RNA copies). Amplification efficiency was in the range of 97.3% to 107.5% with linearity (R2) > 0.99. The diagnostic sensitivity and specificity of the assays was determined as 100%, and all three revealed good intra- and inter-test repeatability. In conclusion, the newly developed RT-qPCRs are sensitive, specific, and reliable test formats that will facilitate BoAstV-CH13/NeuroS1 detection in routine diagnostics as well as in research settings.


Subject(s)
Astroviridae Infections , Astroviridae/genetics , Brain/virology , Cattle Diseases , Encephalitis, Viral , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Astroviridae Infections/diagnosis , Astroviridae Infections/genetics , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/genetics , Cattle Diseases/virology , Encephalitis, Viral/diagnosis , Encephalitis, Viral/genetics , Encephalitis, Viral/veterinary , Encephalitis, Viral/virology , Sensitivity and Specificity
14.
Adv Virus Res ; 99: 109-137, 2017.
Article in English | MEDLINE | ID: mdl-29029723

ABSTRACT

Astroviruses are best known as being one of the leading causes of diarrhea in infants and were first described in this context in 1975. In its first years, astrovirus research was mainly restricted to electron microscopy and serology studies. The ability to culture some of these viruses in vitro allowed a first consequent step forward, especially at the molecular level. Since the emergence of more powerful genetic methods, though, the face of this research field has dramatically changed and evolved. From the exponential number of discoveries of new astrovirus strains in the most varied of animal species to their association with atypical diseases, these viruses revealed a lot of surprises, and many more are probably still waiting to be uncovered. This chapter summarizes the most important knowledge about astroviruses and discusses the implication of the latest findings in this area of research.


Subject(s)
Astroviridae Infections/veterinary , Astroviridae Infections/virology , Mamastrovirus/classification , Mamastrovirus/isolation & purification , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...