Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Sleep Res ; 33(2): e14003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37688512

ABSTRACT

Nightmares are common among the general population and psychiatric patients and have been associated with signs of nocturnal arousal such as increased heart rate or increased high-frequency electroencephalographic (EEG) activity. However, it is still unclear, whether these characteristics are more of a trait occurring in people with frequent nightmares or rather indicators of the nightmare state. We compared participants with frequent nightmares (NM group; n = 30) and healthy controls (controls; n = 27) who spent 4 nights in the sleep laboratory over the course of 8 weeks. The NM group received six sessions of imagery rehearsal therapy (IRT), the 'gold standard' of cognitive-behavioural therapy for nightmares, between the second and the third night. Sleep architecture and spectral power were compared between groups, and between nights of nightmare occurrence and nights without nightmare occurrence in the NM group. Additionally, changes before and after therapy were recorded. The NM group showed increased beta (16.25-31 Hz) and low gamma (31.25-35 Hz) power during the entire night compared to the controls, but not when comparing nights of nightmare occurrence to those without. Moreover, low gamma activity in rapid eye movement sleep was reduced after therapy in the NM group. Our findings indicate, cortical hyperarousal is more of a trait in people with frequent nightmares within a network of other symptoms, but also malleable by therapy. This is not only a new finding for IRT but could also lead to improved treatment options in the future that directly target high-frequency EEG activity.


Subject(s)
Dreams , Stress Disorders, Post-Traumatic , Humans , Dreams/physiology , Sleep , Sleep, REM/physiology , Arousal/physiology , Electroencephalography
2.
Nature ; 618(7964): 402-410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225994

ABSTRACT

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Ubiquitinated Proteins , Ubiquitination , Animals , Humans , Mice , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitinated Proteins/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Intracellular Membranes/metabolism
3.
Cereb Cortex ; 30(8): 4306-4324, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32147734

ABSTRACT

Schizophrenia is associated with cognitive and behavioral dysfunctions thought to reflect imbalances in neurotransmission systems. Recent screenings suggested that lack of (functional) syndapin I (PACSIN1) may be linked to schizophrenia. We therefore studied syndapin I KO mice to address the suggested causal relationship to schizophrenia and to analyze associated molecular, cellular, and neurophysiological defects. Syndapin I knockout (KO) mice developed schizophrenia-related behaviors, such as hyperactivity, reduced anxiety, reduced response to social novelty, and an exaggerated novel object response and exhibited defects in dendritic arborization in the cortex. Neuromorphogenic deficits were also observed for a schizophrenia-associated syndapin I mutant in cultured neurons and coincided with a lack of syndapin I-mediated membrane recruitment of cytoskeletal effectors. Syndapin I KO furthermore caused glutamatergic hypofunctions. Syndapin I regulated both AMPAR and NMDAR availabilities at synapses during basal synaptic activity and during synaptic plasticity-particularly striking were a complete lack of long-term potentiation and defects in long-term depression in syndapin I KO mice. These synaptic plasticity defects coincided with alterations of postsynaptic actin dynamics, synaptic GluA1 clustering, and GluA1 mobility. Both GluA1 and GluA2 were not appropriately internalized. Summarized, syndapin I KO led to schizophrenia-like behavior, and our analyses uncovered associated molecular and cellular mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , Neuronal Plasticity/physiology , Schizophrenia/metabolism , Animals , Behavior, Animal/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
4.
PLoS Genet ; 11(8): e1005454, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26284655

ABSTRACT

Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.


Subject(s)
Autophagy , Lysosomes/physiology , Proteins/genetics , Spastic Paraplegia, Hereditary/pathology , Animals , Cells, Cultured , Cerebellum/pathology , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Cortex/pathology , Purkinje Cells/pathology , Spastic Paraplegia, Hereditary/genetics
5.
Nature ; 522(7556): 354-8, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26040720

ABSTRACT

The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins , Biomarkers/metabolism , Cell Line , Endoplasmic Reticulum/chemistry , Female , Gene Deletion , Humans , Intracellular Signaling Peptides and Proteins , Lysosomes/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Phagosomes/metabolism , Protein Binding , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology
7.
J Cell Sci ; 128(3): 499-515, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25413347

ABSTRACT

F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.


Subject(s)
Cadherins/metabolism , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Ovum/physiology , Wings, Animal/embryology , Adherens Junctions/metabolism , Animals , Carrier Proteins/genetics , Cell Differentiation , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Endocytosis/genetics , Endocytosis/physiology , Endosomes/metabolism , Epithelial Cells/cytology , Kinesins/metabolism , Microtubule-Associated Proteins/genetics , Morphogenesis/physiology , Protein Transport/physiology , RNA Interference , RNA, Small Interfering
8.
Nat Commun ; 5: 5565, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25470305

ABSTRACT

Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes.


Subject(s)
Fluorescent Dyes/metabolism , Hepatocytes/metabolism , Indoles/metabolism , Nanoparticles/metabolism , RNA, Small Interfering/administration & dosage , Animals , Cholesterol/blood , Drug Delivery Systems , HEK293 Cells , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , RNA Interference , Rats
9.
PLoS One ; 9(5): e97692, 2014.
Article in English | MEDLINE | ID: mdl-24841972

ABSTRACT

Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unknown. We show that the F-actin-binding protein Abp1 is prominently expressed in the Drosophila nervous system and reveal that Abp1 is an important regulator in shaping glutamatergic neuromuscular junctions (NMJs) of flies. STED microscopy shows that Abp1 accumulations can be found in close proximity of synaptic vesicles and at the cell cortex in nerve terminals. Abp1 knock-out larvae have locomotion defects and underdeveloped NMJs that are characterized by a reduced number of both type Ib synaptic boutons and branches of motornerve terminals. Abp1 is able to indirectly trigger Arp2/3 complex-mediated actin nucleation and interacts with both WASP and Scar. Consistently, Arp2 and Arp3 loss-of-function also resulted in impairments of bouton formation and arborization at NMJs, i.e. fully phenocopied abp1 knock-out. Interestingly, neuron- and muscle-specific rescue experiments revealed that synaptic bouton formation critically depends on presynaptic Abp1, whereas the NMJ branching defects can be compensated for by restoring Abp1 functions at either side. In line with this presynaptic importance of Abp1, also presynaptic Arp2 and Arp3 are crucial for the formation of type Ib synaptic boutons. Interestingly, presynaptic Abp1 functions in NMJ formation were fully dependent on the Arp2/3 complex, as revealed by suppression of Abp1-induced synaptic bouton formation and branching of axon terminals upon presynaptic Arp2 RNAi. These data reveal that Abp1 and Arp2/3 complex-mediated actin cytoskeletal dynamics drive both synaptic bouton formation and NMJ branching. Our data furthermore shed light on an intense bidirectional functional crosstalk between pre- and postsynapses during the development of synaptic contacts.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Microfilament Proteins/metabolism , Nerve Net/growth & development , Neuromuscular Junction/growth & development , Presynaptic Terminals/physiology , Analysis of Variance , Animals , Microscopy, Fluorescence
10.
PLoS Genet ; 9(12): e1003988, 2013.
Article in English | MEDLINE | ID: mdl-24367272

ABSTRACT

Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.


Subject(s)
Carrier Proteins/genetics , Endosomes/metabolism , Lysosomes/metabolism , Retinal Degeneration/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , Brain/metabolism , Brain/pathology , Carrier Proteins/metabolism , Corpus Callosum/metabolism , Corpus Callosum/pathology , Disease Models, Animal , Endosomes/pathology , Humans , Lysosomes/genetics , Mice , Mice, Knockout , Motor Neurons/metabolism , Mutation , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/pathology
11.
J Clin Invest ; 123(10): 4273-82, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24051375

ABSTRACT

Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We generated the corresponding mouse model to study the underlying cellular pathology. Mice with heterozygous deletion of exon 2 in Reep1 displayed a gait disorder closely resembling SPG31 in humans. Homozygous exon 2 deletion resulted in the complete loss of REEP1 and a more severe phenotype with earlier onset. At the molecular level, we demonstrated that REEP1 is a neuron-specific, membrane-binding, and membrane curvature-inducing protein that resides in the ER. We further show that Reep1 expression was prominent in cortical motor neurons. In REEP1-deficient mice, these neurons showed reduced complexity of the peripheral ER upon ultrastructural analysis. Our study connects proper neuronal ER architecture to long-term axon survival.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Transport Proteins/genetics , Motor Neurons/metabolism , Spastic Paraplegia, Hereditary/genetics , Animals , Base Sequence , Cell Membrane/chemistry , Cell Membrane/metabolism , Endoplasmic Reticulum/pathology , Exons , Gait , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Molecular Sequence Data , Motor Neurons/pathology , Sequence Deletion , Spastic Paraplegia, Hereditary/pathology , Spinal Cord/pathology
12.
J Neurosci ; 32(49): 17842-56, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223303

ABSTRACT

Cortical actin dynamics shapes cells. To generate actin filaments, cells rely on actin nucleators. Cobl is a novel, brain-enriched, WH2 domain-based actin nucleator, yet, its functions remained largely elusive. Here, we reveal that Cobl plays a crucial role in Purkinje cell development using gene gun transfections within intact murine cerebellar contexts. Cobl deficiency impaired proper dendritic arborization of Purkinje cells and led to low-complexity arbors. Branch point numbers and density and especially higher order branching were strongly affected. Our efforts to reveal how Cobl is physically and functionally integrated into the cortical actin cytoskeleton showed that all Cobl loss-of-function phenotypes were exactly mirrored by knockdown of the F-actin-binding protein Abp1. By subcellular fractionations, protein interaction analyses, subcellular reconstitutions of protein complexes, colocalization studies in cells and tissues, and by functional analyses in neuronal morphogenesis we demonstrate that both proteins associate and work with each other closely. Cobl-mediated dendritic branch induction in hippocampal neurons critically relied on Abp1. Our study highlights that the functions of Abp1 are distinct from those of the Cobl-binding protein syndapin I. The importance of Cobl/Abp1 complex formation and of Abp1-mediated F-actin association was highlighted by functional rescue experiments demonstrating that a Cobl mutant deficient for Abp1 binding and an Abp1 mutant supporting Cobl association but lacking the F-actin binding ability failed to rescue the respective loss-of-function phenotypes. Thus, F-actin-anchored Cobl/Abp1 complexes seem crucial for neuromorphogenesis processes, particularly for the postnatal arborization of Purkinje cells representing the source for all motor coordination in the cerebellar cortex.


Subject(s)
Cerebellum/growth & development , Microfilament Proteins/physiology , Neurogenesis/physiology , Proteins/physiology , Purkinje Cells/physiology , src Homology Domains/physiology , Actins/metabolism , Animals , Cerebellum/metabolism , Cytoskeletal Proteins , Dendrites/ultrastructure , Gene Knockdown Techniques/methods , Hippocampus/cytology , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Molecular Imaging/methods , Mutation , Protein Binding , Proteins/genetics , Proteins/metabolism , Purkinje Cells/cytology , Purkinje Cells/metabolism , Transfection/methods , src Homology Domains/genetics
13.
J Cell Sci ; 125(Pt 15): 3578-89, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22467854

ABSTRACT

Many developmental processes rely on cortical actin dynamics; however, the mechanisms of its fine control at the cell cortex are still largely unknown. Our analyses demonstrate that the lipid- and F-actin-binding protein Abp1 is crucial for actin-driven bristle development in Drosophila melanogaster. Combined genetic, cell biological and biochemical analyses reveal that Abp1 triggers cortical Arp2/3-mediated actin nucleation by complex formation with Scar in bristle development. The role of the plasma-membrane-associated Abp1 subpool was highlighted by constitutively membrane-anchored Abp1. Such gain-of-function experiments led to a severe split-bristle phenotype, which was negatively correlated with bristle length. This phenotype was dependent on Scar but not on WASP and required the Scar-interacting SH3 domain of Abp1. Strikingly, knockout of abp1 led to defects in both microchaete and macrochaete bristle integrity. Importantly, Arp2- and Scar-deficient flies displayed similar bristle phenotypes. Microchaetes of flies deficient for Abp1, Arp2 and Scar functions had kinks, whereas those of wasp heterozygous flies did not. Electron microscopy analyses revealed that abp1 knockout, Arp2 RNAi and Scar RNAi all led to distorted macrochaetes with an excessive number of ridges. Interestingly, despite the physical association of Abp1 with Scar and its ability to use the Arp2/3 complex activator as an effector, abp1 knockout did not affect Scar stability. This is in contrast to classical Scar complex components, such as Kette or Sra-1. Our work reveals that Abp1 is an important, Scar-interacting factor controlling cortical Arp2/3-mediated actin nucleation and unravels a novel layer of complexity in the scrupulous control of cortical actin nucleation during sensory organ formation.


Subject(s)
Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Microfilament Proteins/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actin Cytoskeleton/chemistry , Actin-Related Protein 2-3 Complex/genetics , Actins/chemistry , Actins/metabolism , Animals , COS Cells , Carrier Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorocebus aethiops , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , RNA Interference , Signal Transduction , Wiskott-Aldrich Syndrome Protein Family/genetics , src Homology Domains
14.
EMBO J ; 30(15): 3147-59, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21725280

ABSTRACT

Spatial control of cortical actin nucleation is indispensable for proper establishment and plasticity of cell morphology. Cobl is a novel WH2 domain-based actin nucleator. The cellular coordination of Cobl's nucleation activity, however, has remained elusive. Here, we reveal that Cobl's cellular functions are dependent on syndapin. Cobl/syndapin complexes form in vivo, as demonstrated by colocalization, coimmunoprecipitation and subcellular recruitment studies. In vitro reconstitutions and subcellular fractionations demonstrate that, via its lipid-binding Fer/CIP4 Homology (FCH)-Bin/Amphiphysin/Rvs (F-BAR) domain, syndapin recruits Cobl to membranes. Consistently, syndapin I RNAi impairs cortical localization of Cobl. Further functional studies in neurons show that Cobl and syndapin I work together in dendritic arbor development. Importantly, both proteins are crucial for dendritogenesis. Cobl-mediated functions in neuromorphogenesis critically rely on syndapin I and interestingly also on Arp3. Endogenous Cobl, syndapin I and the Arp2/3 complex activator and syndapin-binding partner N-WASP were present in one complex, as demonstrated by coimmunoprecipitations. Together, these data provide detailed insights into the molecular basis for Cobl-mediated functions and reveal that different actin nucleators are functionally intertwined by syndapin I during neuromorphogenesis.


Subject(s)
Actins/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Neurons/cytology , Neurons/metabolism , Proteins/metabolism , Animals , Cell Line , Cytoskeletal Proteins , Humans , Immunoprecipitation , Mice , Microfilament Proteins , Microscopy, Confocal , Protein Binding , Rats
15.
J Clin Psychopharmacol ; 28(5): 550-4, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18794652

ABSTRACT

OBJECTIVE: Although many patients with obsessive-compulsive disorder (OCD) benefit from treatment with serotonin reuptake inhibitors (SRIs), it is estimated that 40% to 60% of them do not respond. The objective of the present study was to evaluate the efficacy of quetiapine added to baseline treatment with SRIs for the treatment of OCD in severely ill adult subjects. METHOD: Forty patients (21 men, 19 women) with primary OCD according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria participated in a 12-week, double-blind, placebo-controlled trial. They were randomly assigned to dosages of quetiapine titrated up to 400 mg/d (n = 20) or to placebo (n = 20) in addition to their SRI treatment. During the continuation phase (weeks 6-12), subjects received different dosages between 400 and 600 mg/d depending on clinical response. At entry, all patients were unresponsive to at least 1 course of at least 12 weeks of treatment with SRIs at defined doses. The total Yale-Brown Obsessive-Compulsive Scale score was the primary efficacy parameter. RESULTS: Intention-to-treat, last-observation-carried-forward analysis demonstrated a mean +/- SD decrease in Yale-Brown Obsessive-Compulsive Scale score of 5.2 +/- 5.4 in the quetiapine group and 3.9 +/- 4.9 in the placebo group. The analysis of treatment effects between the 2 groups showed no significant difference. There were no significant group differences in any of the other self-rating scales or clinician-administered rating scales. CONCLUSIONS: In this study, augmentation of SRI treatment with quetiapine in severe OCD had no additional effect.


Subject(s)
Antipsychotic Agents/therapeutic use , Dibenzothiazepines/therapeutic use , Obsessive-Compulsive Disorder/drug therapy , Adolescent , Adult , Aged , Antipsychotic Agents/administration & dosage , Dibenzothiazepines/administration & dosage , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Psychiatric Status Rating Scales , Quetiapine Fumarate , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/therapeutic use , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...