Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Transl Radiat Oncol ; 42: 100662, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37576069

ABSTRACT

Purpose: The in vitro clonogenic assay (IVCA) is the mainstay of quantitative radiobiology. Here, we investigate the benefit of a time-resolved IVCA version (trIVCA) to improve the quantification of clonogenic survival and relative biological effectiveness (RBE) by analyzing cell colony growth behavior. Materials & Methods: In the IVCA, clonogenicity classification of cell colonies is performed based on a fixed colony size threshold after incubation. In contrast, using trIVCA, we acquire time-lapse microscopy images during incubation and track the growth of each colony using neural-net-based image segmentation. Attributes of the resulting growth curves are then used as predictors for a decision tree classifier to determine clonogenicity of each colony. The method was applied to three cell lines, each irradiated with 250 kV X-rays in the range 0-8 Gy and carbon ions of high LET (100 keV/µm, dose-averaged) in the range 0-2 Gy. We compared the cell survival curves determined by trIVCA to those from the classical IVCA across different size thresholds and incubation times. Further, we investigated the impact of the assaying method on RBE determination. Results: Size distributions of abortive and clonogenic colonies overlap consistently, rendering perfect separation via size threshold unfeasible at any readout time. This effect is dose-dependent, systematically inflating the steepness and curvature of cell survival curves. Consequently, resulting cell survival estimates show variability between 3% and 105%. This uncertainty propagates into RBE calculation with variability between 8% and 25% at 2 Gy.Determining clonogenicity based on growth curves has an accuracy of 95% on average. Conclusion: The IVCA suffers from substantial uncertainty caused by the overlap of size distributions of delayed abortive and clonogenic colonies. This impairs precise quantification of cell survival and RBE. By considering colony growth over time, our method improves assaying clonogenicity.

2.
Bioinformatics ; 38(10): 2970-2972, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561161

ABSTRACT

MOTIVATION: Live-cell microscopy has become an essential tool for analyzing dynamic processes in various biological applications. Thereby, high-throughput and automated tracking analyses allow the simultaneous evaluation of large numbers of objects. However, to critically assess the influence of individual objects on calculated summary statistics, and to detect heterogeneous dynamics or possible artifacts, such as misclassified or -tracked objects, a direct mapping of gained statistical information onto the actual image data would be necessary. RESULTS: We present VisuStatR as a platform independent software package that allows the direct visualization of time-resolved summary statistics of morphological characteristics or motility dynamics onto raw images. The software contains several display modes to compare user-defined summary statistics and the underlying image data in various levels of detail. AVAILABILITY AND IMPLEMENTATION: VisuStatR is a free and open-source R-package, containing a user-friendly graphical-user interface and is available via GitHub at https://github.com/grrchrr/VisuStatR/ under the MIT+ license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Microscopy , Software , Artifacts , Licensure
3.
Cancers (Basel) ; 13(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34439370

ABSTRACT

The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.

4.
Front Neurosci ; 15: 667011, 2021.
Article in English | MEDLINE | ID: mdl-34267622

ABSTRACT

Animal brains still outperform even the most performant machines with significantly lower speed. Nonetheless, impressive progress has been made in robotics in the areas of vision, motion- and path planning in the last decades. Brain-inspired Spiking Neural Networks (SNN) and the parallel hardware necessary to exploit their full potential have promising features for robotic application. Besides the most obvious platform for deploying SNN, brain-inspired neuromorphic hardware, Graphical Processing Units (GPU) are well capable of parallel computing as well. Libraries for generating CUDA-optimized code, like GeNN and affordable embedded systems make them an attractive alternative due to their low price and availability. While a few performance tests exist, there has been a lack of benchmarks targeting robotic applications. We compare the performance of a neural Wavefront algorithm as a representative of use cases in robotics on different hardware suitable for running SNN simulations. The SNN used for this benchmark is modeled in the simulator-independent declarative language PyNN, which allows using the same model for different simulator backends. Our emphasis is the comparison between Nest, running on serial CPU, SpiNNaker, as a representative of neuromorphic hardware, and an implementation in GeNN. Beyond that, we also investigate the differences of GeNN deployed to different hardware. A comparison between the different simulators and hardware is performed with regard to total simulation time, average energy consumption per run, and the length of the resulting path. We hope that the insights gained about performance details of parallel hardware solutions contribute to developing more efficient SNN implementations for robotics.

5.
Phys Med Biol ; 66(3): 035017, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33264763

ABSTRACT

Understanding dose-dependent survival of irradiated cells is a pivotal goal in radiotherapy and radiobiology. To this end, the clonogenic assay is the standard in vitro method, classifying colonies into either clonogenic or non-clonogenic based on a size threshold at a fixed time. Here we developed a methodological framework for the automated analysis of time course live-cell image data to examine in detail the growth dynamics of large numbers of colonies that occur during such an experiment. We developed a segmentation procedure that exploits the characteristic composition of phase-contrast images to identify individual colonies. Colony tracking allowed us to characterize colony growth dynamics as a function of dose by extracting essential information: (a) colony size distributions across time; (b) fractions of differential growth behavior; and (c) distributions of colony growth rates across all tested doses. We analyzed three data sets from two cell lines (H3122 and RENCA) and made consistent observations in line with already published results: (i) colony growth rates are normally distributed with a large variance; (ii) with increasing dose, the fraction of exponentially growing colonies decreases, whereas the fraction of delayed abortive colonies increases; as a novel finding, we observed that (iii) mean exponential growth rates decrease linearly with increasing dose across the tested range (0-10 Gy). The presented method is a powerful tool to examine live colony growth on a large scale and will help to deepen our understanding of the dynamic, stochastic processes underlying the radiation response in vitro.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Renal Cell/pathology , Image Processing, Computer-Assisted/methods , Microscopy, Phase-Contrast/methods , Animals , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Renal Cell/radiotherapy , Cell Cycle , Cell Proliferation , Cell Survival , Humans , In Vitro Techniques , Kidney Neoplasms/pathology , Kidney Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Mice , Tumor Cells, Cultured , X-Rays
6.
FEBS Open Bio ; 10(12): 2510-2531, 2020 12.
Article in English | MEDLINE | ID: mdl-33112491

ABSTRACT

Multiseriate and true-branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/chemistry , Cytoskeletal Proteins/metabolism , Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry
7.
BMC Evol Biol ; 17(1): 209, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28859625

ABSTRACT

BACKGROUND: Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. RESULTS: Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). CONCLUSIONS: The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits.


Subject(s)
Biological Evolution , Cyanobacteria/classification , Cyanobacteria/genetics , Regulatory Sequences, Nucleic Acid , Cyanobacteria/cytology , Cyanobacteria/metabolism , Evolution, Molecular , Gene Expression Regulation , Phenotype , Sucrose/metabolism , Transcription Initiation Site
8.
Genome Biol Evol ; 5(1): 31-44, 2013.
Article in English | MEDLINE | ID: mdl-23221676

ABSTRACT

Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.


Subject(s)
Cyanobacteria/genetics , Evolution, Molecular , Genome, Bacterial , Genome, Plastid , Photosynthesis/genetics , Cyanobacteria/metabolism , Ecosystem , Fresh Water , Gene Transfer, Horizontal , Multigene Family , Phylogeny , Plants/genetics , Symbiosis/genetics , Water/metabolism
9.
Biol Res ; 46(4): 373-82, 2013.
Article in English | MEDLINE | ID: mdl-24510140

ABSTRACT

Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , DNA, Bacterial/genetics , Amino Acid Sequence , Base Sequence , Gene Transfer Techniques , Phylogeny
10.
Biol. Res ; 46(4): 373-382, 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-700400

ABSTRACT

Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , DNA, Bacterial/genetics , Amino Acid Sequence , Base Sequence , Gene Transfer Techniques , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...