Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37989592

ABSTRACT

Sensory systems are shaped in postnatal life by the refinement of synaptic connectivity. In the dorsal horn of the spinal cord, somatosensory circuits undergo postnatal activity-dependent reorganization, including the refinement of primary afferent A-fiber terminals from superficial to deeper spinal dorsal horn laminae which is accompanied by decreases in cutaneous sensitivity. Here, we show in the mouse that microglia, the resident immune cells in the CNS, phagocytose A-fiber terminals in superficial laminae in the first weeks of life. Genetic perturbation of microglial engulfment during the initial postnatal period in either sex prevents the normal process of A-fiber refinement and elimination, resulting in an altered sensitivity of dorsal horn cells to dynamic tactile cutaneous stimulation, and behavioral hypersensitivity to dynamic touch. Thus, functional microglia are necessary for the normal postnatal development of dorsal horn sensory circuits. In the absence of microglial engulfment, superfluous A-fiber projections remain in the dorsal horn, and the balance of sensory connectivity is disrupted, leading to lifelong hypersensitivity to dynamic touch.


Subject(s)
Touch Perception , Touch , Animals , Mice , Microglia , Spinal Cord Dorsal Horn , Nerve Fibers, Myelinated/physiology , Spinal Cord/physiology , Posterior Horn Cells
4.
Nat Commun ; 12(1): 5722, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588430

ABSTRACT

Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.


Subject(s)
Neurons/classification , Spinal Cord/cytology , Transcriptome , Animals , Atlases as Topic , Cell Nucleus/genetics , Datasets as Topic , Mice , Neurons/cytology , RNA-Seq , Single-Cell Analysis , Spatial Analysis , Spinal Cord/growth & development
5.
Annu Rev Physiol ; 80: 189-217, 2018 02 10.
Article in English | MEDLINE | ID: mdl-28961064

ABSTRACT

The exteroceptive somatosensory system is important for reflexive and adaptive behaviors and for the dynamic control of movement in response to external stimuli. This review outlines recent efforts using genetic approaches in the mouse to map the spinal cord circuits that transmit and gate the cutaneous somatosensory modalities of touch, pain, and itch. Recent studies have revealed an underlying modular architecture in which nociceptive, pruritic, and innocuous stimuli are processed by distinct molecularly defined interneuron cell types. These include excitatory populations that transmit information about both innocuous and painful touch and inhibitory populations that serve as a gate to prevent innocuous stimuli from activating the nociceptive and pruritic transmission pathways. By dissecting the cellular composition of dorsal-horn networks, studies are beginning to elucidate the intricate computational logic of somatosensory transformation in health and disease.


Subject(s)
Pain/physiopathology , Pruritus/physiopathology , Spinal Cord/physiology , Touch/physiology , Animals , Humans , Neural Pathways/physiology , Neural Pathways/physiopathology , Neurons/physiology , Spinal Cord/physiopathology
6.
Neuron ; 96(6): 1419-1431.e5, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29224725

ABSTRACT

Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORß orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm. Genetic manipulations that abrogate inhibitory RORß IN function result in an ataxic gait characterized by exaggerated flexion movements and marked alterations to the step cycle. Inactivation of RORß in inhibitory neurons leads to reduced presynaptic inhibition and changes to sensory-evoked reflexes, arguing that the RORß inhibitory INs function to suppress the sensory transmission pathways that activate flexor motor reflexes and interfere with the ongoing locomotor program. VIDEO ABSTRACT.


Subject(s)
Interneurons/physiology , Locomotion/physiology , Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism , Spinal Cord/cytology , Walking/physiology , Afferent Pathways , Animals , Animals, Newborn , Electric Stimulation , Feedback, Sensory , GABA Agents/pharmacology , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Hip Joint/innervation , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/physiology , Neural Inhibition/genetics , Neural Inhibition/physiology , Nuclear Receptor Subfamily 1, Group F, Member 2/genetics , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Reflex/genetics , Reflex/physiology , Sensory Thresholds/physiology
7.
Science ; 350(6260): 550-4, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26516282

ABSTRACT

Light mechanical stimulation of hairy skin can induce a form of itch known as mechanical itch. This itch sensation is normally suppressed by inputs from mechanoreceptors; however, in many forms of chronic itch, including alloknesis, this gating mechanism is lost. Here we demonstrate that a population of spinal inhibitory interneurons that are defined by the expression of neuropeptide Y::Cre (NPY::Cre) act to gate mechanical itch. Mice in which dorsal NPY::Cre-derived neurons are selectively ablated or silenced develop mechanical itch without an increase in sensitivity to chemical itch or pain. This chronic itch state is histamine-independent and is transmitted independently of neurons that express the gastrin-releasing peptide receptor. Thus, our studies reveal a dedicated spinal cord inhibitory pathway that gates the transmission of mechanical itch.


Subject(s)
Interneurons/physiology , Mechanotransduction, Cellular/physiology , Neural Inhibition , Pruritus/physiopathology , Spinal Cord/physiology , Synaptic Transmission , Action Potentials , Animals , Hair/physiology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/genetics , Mice , Mice, Transgenic , Neuropeptide Y/genetics , Neuropeptide Y/physiology , Skin/innervation
8.
J Physiol ; 592(7): 1535-44, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24421353

ABSTRACT

Brainstem descending control is crucial in maintaining the balance of excitation and inhibition in spinal sensory networks. In the adult, descending inhibition of spinal dorsal horn circuits arising from the brainstem rostroventral medial medulla (RVM) is targeted to neurons with a strong nociceptive C fibre input. Before the fourth postnatal week, the RVM exerts a net facilitation of spinal networks but it is not known if this is targeted to specific dorsal horn neuronal inputs. As the maturation from descending facilitation to inhibition occurs only after C fibre central synaptic maturation is complete, we hypothesized that RVM facilitation in young animals is targeted to A fibre afferent inputs. To test this, the RVM was stimulated while recording dorsal horn neuronal activity in vivo under isoflurane anaesthesia at postnatal day (P) 21 and P40 (adult). Electrical thresholds for A and C fibre evoked activity, spike counts and wind-up characteristics at baseline and during RVM stimulation (10-100 µA, 10 Hz) were compared. In adults, RVM stimulation selectively increased the threshold for C fibre evoked activity while at P21, it selectively decreased the threshold for A fibre evoked activity and these effects were correlated to the wind-up characteristics of the neuron. Thus, the postnatal shift in RVM control of dorsal horn circuits is not only directional but also modality specific, from facilitation of A fibre input in the young animal to inhibition of nociceptive C input in the adult, with additional contextual factors. The descending control of spinal sensory networks serves very different functions in young and adult animals.


Subject(s)
Medulla Oblongata/physiology , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/physiology , Neural Inhibition , Sensation , Spinal Nerves/physiology , Age Factors , Animals , Electric Stimulation , Evoked Potentials , Female , Male , Medulla Oblongata/cytology , Neural Pathways/physiology , Rats, Sprague-Dawley , Time Factors
9.
Ann N Y Acad Sci ; 1279: 97-102, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23531007

ABSTRACT

Developing brain circuits are shaped by postnatal sensory experience, but little is known about this process at the level of the spinal cord. Here we review the mechanisms by which cutaneous sensory input drives the maturation of spinal sensory circuits. Newborn animals are highly sensitive to tactile input and dorsal horn circuits are dominated by low threshold A fiber inputs. We show that this arises from the absence of the functional, targeted glycinergic inhibition of tactile activity that emerges only in the second week of life. Selective block of afferent C fibers in postnatal week 2 delays the maturation of glycinergic inhibition and maintains dorsal horn circuits in a neonatal state. We propose that in the newborn strong tactile A fiber input facilitates activity-dependent synaptic strengthening in the dorsal horn, but that this ends with the arrival of nociceptive C fiber spinal input that drives the maturation of targeted glycinergic inhibition.


Subject(s)
Motor Activity/physiology , Nerve Net/growth & development , Nociceptors/physiology , Spinal Cord/cytology , Spinal Cord/growth & development , Touch/physiology , Afferent Pathways/cytology , Afferent Pathways/growth & development , Afferent Pathways/physiology , Animals , Animals, Newborn , Humans , Infant, Newborn , Models, Biological , Nerve Net/physiology , Nociceptors/cytology , Physical Stimulation , Spinal Cord/physiology
10.
Proc Natl Acad Sci U S A ; 109(30): 12201-6, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22778407

ABSTRACT

Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α(2) homomeric to predominantly mature α(1)/ß glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber-mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits.


Subject(s)
Animals, Newborn/growth & development , Nerve Fibers, Unmyelinated/metabolism , Neural Inhibition/physiology , Posterior Horn Cells/metabolism , Receptors, Glycine/metabolism , Touch Perception/physiology , Animals , Animals, Newborn/metabolism , Immunohistochemistry , Interneurons/metabolism , Nerve Block , Rats , Sciatic Nerve , Strychnine
11.
Anesthesiology ; 108(1): 122-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18156890

ABSTRACT

BACKGROUND: The significant postnatal maturation of gamma-aminobutyric acid signaling in the developing brain is likely to have important implications for infant pain processing. Gamma-aminobutyric acid receptor activation evokes analgesia and sedation in the adult, but the impact of immature gamma-aminobutyric acid signaling on modulators of the gamma-aminobutyric acid type A receptor, such as the benzodiazepines, is not known in infants. METHODS: Nociceptive processing was measured using behavioral and electrophysiological recordings of hind limb flexor withdrawal threshold and magnitude to mechanical and thermal stimulation of the hind paw. The effects of midazolam (0.1-10 mg/kg subcutaneously, 0.1 mg/kg intrathecally) or saline treatment were compared in rats aged 3, 10, 21, and 40 days (adult). The sedative action of midazolam was assessed at each age using righting reflex latencies. RESULTS: Midazolam dose-dependently decreased mechanical reflex thresholds and increased mechanical and thermal reflex magnitudes in neonates. In older rat pups and adults, midazolam had the reverse effect, increasing thresholds and decreasing reflex magnitude. These differences were mediated supraspinally; intrathecal administration of midazolam did not affect flexion reflexes at any age. Midazolam had no sedative action in the youngest rats; sedation increased gradually through postnatal development. CONCLUSIONS: The results show a striking reversal in the effects of midazolam on nociception and sedation in rats between postnatal days 3 and 10. Midazolam fails to sedate young rats and sensitizes their flexor reflex activity. The sedative and desensitizing effects of midazolam are not observed until later in life after maturation in supraspinal centers. The results indicate a need to better understand the pharmacology of drugs used routinely in neonatal intensive care.


Subject(s)
Hypnotics and Sedatives , Midazolam , Pain Measurement/drug effects , Pain/drug therapy , Reflex/drug effects , Animals , Animals, Newborn , Female , Male , Pain/physiopathology , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Reflex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...