Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(33): 12376-12387, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37561908

ABSTRACT

Transformation, dissolution, and sorption of copper oxide nanoparticles (CuO-NP) play an important role in freshwater ecosystems. We present the first mesocosm experiment on the fate of CuO-NP and the dynamics of the zooplankton community over a period of 12 months. Increasingly low (0.08-0.28 mg Cu L-1) and high (0.99-2.99 mg Cu L-1) concentrations of CuO-NP and CuSO4 (0.10-0.34 mg Cu L-1) were tested in a multiple dosing scenario. At the high applied concentration (CuO-NP_H) CuO-NP aggregated and sank onto the sediment layer, where we recovered 63% of Cu applied. For the low concentration (CuO-NP_L) only 41% of applied copper could be recovered in the sediment. In the water column, the percentage of initially applied Cu recovered was on average 3-fold higher for CuO-NP_L than for CuO-NP_H. Zooplankton abundance was substantially compromised in the treatments CuSO4 (p < 0.001) and CuO-NP_L (p < 0.001). Community analysis indicated that Cladocera were most affected (bk = -0.49), followed by Nematocera (bk = -0.32). The abundance of Cladocera over time and of Dixidae in summer was significantly reduced in the treatment CuO-NP_L (p < 0.001; p < 0.05) compared to the Control. Our results indicate a higher potential for negative impacts on the freshwater community when lower concentrations of CuO-NP (<0.1 mg Cu L-1) enter the ecosystem.


Subject(s)
Cladocera , Metal Nanoparticles , Nanoparticles , Water Pollutants, Chemical , Animals , Copper/toxicity , Copper/analysis , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Fresh Water , Zooplankton , Metal Nanoparticles/toxicity
2.
Ecol Evol ; 10(24): 13664-13672, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391671

ABSTRACT

Effective interactions between plants and pollinators are essential for the reproduction of plant species. Pollinator exclusion experiments and pollen supplementation experiments quantify the degree to which plants depend on animal pollinators and the degree to which plant reproduction is pollen limited. Pollen supplementation experiments have been conducted across the globe, but are rare in high latitude regions. To fill this knowledge gap, we experimentally investigated the dependence on animal pollinators and magnitude of pollen limitation in eight plant species north of the Arctic Circle in Lapland, Finland. Our findings show that all plant species were pollinator dependent, but not pollen limited. We discuss several mechanisms that might buffer our focal plants from pollen limitation, including plant and pollinator generalization, and attractive plant traits. Our results demonstrate that many plant species north of the Arctic Circle are currently receiving adequate pollinator service and provide a baseline for future comparisons of pollinator dependence and pollen limitation in the Arctic across space and time.

SELECTION OF CITATIONS
SEARCH DETAIL
...