Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sensors (Basel) ; 24(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475112

ABSTRACT

Optical 3D scanning applications are increasingly used in various medical fields. Setups involving multiple adjustable systems require repeated extrinsic calibration between patients. Existing calibration solutions are either not applicable to the medical field or require a time-consuming process with multiple captures and target poses. Here, we present an application with a 3D checkerboard (3Dcb) for extrinsic calibration with a single capture. The 3Dcb application can register captures with a reference to validate measurement quality. Furthermore, it can register captures from camera pairs for point-cloud stitching of static and dynamic scenes. Registering static captures from TIDA-00254 to its reference from a Photoneo MotionCam-3D resulted in an error (root mean square error ± standard deviation) of 0.02 mm ± 2.9 mm. Registering a pair of Photoneo MotionCam-3D cameras for dynamic captures resulted in an error of 2.2 mm ± 1.4 mm. These results show that our 3Dcb implementation provides registration for static and dynamic captures that is sufficiently accurate for clinical use. The implementation is also robust and can be used with cameras with comparatively low accuracy. In addition, we provide an extended overview of extrinsic calibration approaches and the application's code for completeness and service to fellow researchers.

2.
Sensors (Basel) ; 23(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765865

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a prevalent musculoskeletal disorder that causes abnormal spinal deformities. The early screening of children and adolescents is crucial to identify and prevent the further progression of AIS. In clinical examinations, scoliometers are often used to noninvasively estimate the primary Cobb angle, and optical 3D scanning systems have also emerged as alternative noninvasive approaches for this purpose. The recent advances in low-cost 3D scanners have led to their use in several studies to estimate the primary Cobb angle or even internal spinal alignment. However, none of these studies demonstrate whether such a low-cost scanner satisfies the minimal requirements for capturing the relevant deformities of the human back. To practically quantify the minimal required spatial resolution and camera resolution to capture the geometry and shape of the deformities of the human back, we used multiple 3D scanning methodologies and systems. The results from an evaluation of 30 captures of AIS patients and 76 captures of healthy subjects showed that the minimal required spatial resolution is between 2 mm and 5 mm, depending on the chosen error tolerance. Therefore, a minimal camera resolution of 640 × 480 pixels is recommended for use in future studies.


Subject(s)
Musculoskeletal Diseases , Optical Devices , Adolescent , Child , Humans , Healthy Volunteers
3.
Front Neurosci ; 16: 1019880, 2022.
Article in English | MEDLINE | ID: mdl-36389246

ABSTRACT

Introduction: Adding sensory feedback to myoelectric prosthetic hands was shown to enhance the user experience in terms of controllability and device embodiment. Often this is realized non-invasively by adding devices, such as actuators or electrodes, within the prosthetic shaft to deliver the desired feedback. However, adding a feedback system in the socket adds more weight, steals valuable space, and may interfere with myoelectric signals. To circumvent said drawbacks we tested for the first time if force feedback from a prosthetic hand could be redirected to another similarly sensitive part of the body: the foot. Methods: We developed a vibrotactile insole that vibrates depending on the sensed force on the prosthetic fingers. This self-controlled clinical pilot trial included four experienced users of myoelectric prostheses. The participants solved two types of tasks with the artificial hands: 1) sorting objects depending on their plasticity with the feedback insole but without audio-visual feedback, and 2) manipulating fragile, heavy, and delicate objects with and without the feedback insole. The sorting task was evaluated with Goodman-Kruskal's gamma for ranked correlation. The manipulation tasks were assessed by the success rate. Results: The results from the sorting task with vibrotactile feedback showed a substantial positive effect. The success rates for manipulation tasks with fragile and heavy objects were high under both conditions (feedback on or off, respectively). The manipulation task with delicate objects revealed inferior success with feedback in three of four participants. Conclusion: We introduced a novel approach to touch sensation in myoelectric prostheses. The results for the sorting task and the manipulation tasks diverged. This is likely linked to the availability of various feedback sources. Our results for redirected feedback to the feet fall in line with previous similar studies that applied feedback to the residual arm. Clinical trial registration: Name: Sensor Glove and Non-Invasive Vibrotactile Feedback Insole to Improve Hand Prostheses Functions and Embodiment (FeetBack). Date of registration: 23 April 2019. Date the first participant was enrolled: 3 September 2021. ClinicalTrials.gov Identifier: NCT03924310.

5.
Biomed Opt Express ; 9(7): 3320-3334, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29984100

ABSTRACT

Selective treatment of the retinal pigment epithelium (RPE) by using short-pulse lasers leads to a less destructive treatment for certain retinal diseases in contrast to conventional photocoagulation. The introduction of selective retina therapy (SRT) to clinical routine is still precluded by the challenges to reliably monitor treatment success and to automatically adjust dose within the locally varying therapeutic window. Combining micrometer-scale depth resolving capabilities of optical coherence tomography (OCT) with SRT can yield real-time information on the laser-induced changes within the RPE after a laser pulse or even during treatment with a laser pulse train. In the present study, SRT and OCT were combined to treat ex-vivo porcine eyes demonstrating closed-loop dose-control. We found a reliable correlation of specific signal changes in time resolved OCT images and physiological lesions in the RPE. First experiments, including 23 porcine eyes, prove the feasibility of the novel treatment concept.

6.
Biomed Eng Online ; 17(1): 74, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29890988

ABSTRACT

BACKGROUND: There is a need for providing sensory feedback for myoelectric prosthesis users. Providing tactile feedback can improve object manipulation abilities, enhance the perceptual embodiment of myoelectric prostheses and help reduce phantom limb pain. Many amputees have referred sensation from their missing hand on their residual limbs (phantom maps). This skin area can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing sensory feedback on the phantom map is to define the accurate boundary of each phantom digit because the phantom map distribution varies from person to person. METHODS: In this paper, automatic phantom map detection methods based on four decomposition support vector machine algorithms and three sampling methods are proposed, complemented by fuzzy logic and active learning strategies. The algorithms and methods are tested on two databases: the first one includes 400 generated phantom maps, whereby the phantom map generation algorithm was based on our observation of the phantom maps to ensure smooth phantom digit edges, variety, and representativeness. The second database includes five reported phantom map images and transformations thereof. The accuracy and training/ classification time of each algorithm using a dense stimulation array (with 100 [Formula: see text] 100 actuators) and two coarse stimulation arrays (with 3 [Formula: see text] 5 and 4 [Formula: see text] 6 actuators) are presented and compared. RESULTS: Both generated and reported phantom map images share the same trends. Majority-pooling sampling effectively increases the training size, albeit introducing some noise, and thus produces the smallest error rates among the three proposed sampling methods. For different decomposition architectures, one-vs-one reduces unclassified regions and in general has higher classification accuracy than the other architectures. By introducing fuzzy logic to bias the penalty parameter, the influence of pooling-induced noise is reduced. Moreover, active learning with different strategies was also tested and shown to improve the accuracy by introducing more representative training samples. Overall, dense arrays employing one-vs-one fuzzy support vector machines with majority-pooling sampling have the smallest average absolute error rate (8.78% for generated phantom maps and 11.5% for reported and transformed phantom map images). The detection accuracy of coarse arrays was found to be significantly lower than for dense array. CONCLUSIONS: The results demonstrate the effectiveness of support vector machines using a dense array in detecting refined phantom map shapes, whereas coarse arrays are unsuitable for this task. We therefore propose a two-step approach, using first a non-wearable dense array to detect an accurate phantom map shape, then to apply a wearable coarse stimulation array customized according to the detection results. The proposed methodology can be used as a tool for helping haptic feedback designers and for tracking the evolvement of phantom maps.


Subject(s)
Hand , Phantoms, Imaging , Support Vector Machine , Automation , Databases, Factual , Fuzzy Logic , Humans
7.
Physiol Meas ; 36(6): 1227-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26009262

ABSTRACT

An automated test system and procedure is proposed, designed to enable systematic testing of electrical impedance tomography (EIT) devices. The system is designed to calculate reliable, repeatable and accurate performance figures of merit of an EIT system using a saline phantom and an industrial robot arm. Applications of the test system are to compare EIT devices against requirements, or to help optimize a device for its operating parameters. A test methodology and sample test results are presented to illustrate its use. The system is used to compare image quality and contrast detection for a range of stimulation and measurement patterns, and results show the best images when the pair of current injection electrodes is spaced between 45 and 170 degrees on a tank. Finally, we propose a classification of the object detection errors, which can facilitate comparison of EIT instrument specifications.


Subject(s)
Tomography/instrumentation , Automation , Electric Impedance , Image Processing, Computer-Assisted , Phantoms, Imaging , Robotics
8.
Am J Vet Res ; 76(1): 60-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25535662

ABSTRACT

OBJECTIVE: To analyze the transit time from various locations in the intestines of cows with cecal dilatation-dislocation (CDD), healthy control cows, and cows with left displacement of the abomasum (LDA). ANIMALS: 15 cows with naturally occurring CDD (group 1), 14 healthy control cows (group 2), and 18 cows with LDA (group 3). PROCEDURES: 5 electronic transmitters were encased in capsules and placed in the lumen of the ileum, cecum, proximal portion of the colon, and 2 locations in the spiral colon (colon 1 and colon 2) and used to measure the transit time (ie, time between placement in the lumen and excretion of the capsules from the rectum). Excretion time of the capsules from each intestinal segment was compared among groups. RESULTS: Cows recovered well from surgery, except for 1 cow with relapse of CDD 4 days after surgery and 2 cows with incisional infection. High variability in capsule excretion times was observed for all examined intestinal segments in all groups. Significant differences were detected for the excretion time from the colon (greater in cows with CDD than in healthy control cows) and cecum (less in cows with LDA than in cows of the other 2 groups). CONCLUSIONS AND CLINICAL RELEVANCE: The technique developed to measure excretion time of capsules from bovine intestines was safe and reliable; however, the large variability observed for all intestinal segments and all groups would appear to be a limitation for its use in assessment of intestinal transit time of cattle in future studies.


Subject(s)
Abomasum/surgery , Cattle Diseases/physiopathology , Cecal Diseases/veterinary , Dilatation, Pathologic/veterinary , Abomasum/physiopathology , Animals , Capsules/administration & dosage , Case-Control Studies , Cattle , Cecal Diseases/physiopathology , Dairying , Dilatation, Pathologic/physiopathology , Female , Reproducibility of Results
9.
Artif Organs ; 38(5): E68-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24646095

ABSTRACT

Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.


Subject(s)
Electric Power Supplies , Heart-Assist Devices , Cardiac Output , Computer Simulation , Equipment Design , Humans , Hydrodynamics , Miniaturization , Models, Cardiovascular
10.
Ann Biomed Eng ; 41(11): 2248-63, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23949656

ABSTRACT

Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.


Subject(s)
Bioelectric Energy Sources , Cardiovascular System/physiopathology , Prostheses and Implants , Blood Flow Velocity , Blood Pressure , Humans , Myocardial Contraction
11.
IEEE Trans Med Imaging ; 32(11): 1997-2005, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23799682

ABSTRACT

Electrical impedance tomography (EIT) is a noninvasive method to image conductivity distributions within a body. One promising application of EIT is to monitor ventilation in patients as a real-time bedside tool. Thus, it is essential that an EIT system reliably provide meaningful information, or alert clinicians when this is impossible. Because the reconstructed images are very sensitive to system instabilities (primarily from electrode connection variability and movement), EIT systems should continuously monitor and, if possible, correct for such errors. Motivated by this requirement, we describe a novel approach to quantitatively measure EIT data quality. Our goals are to define the requirements of a data quality metric, develop a metric q which meets these requirements, and an efficient way to calculate it. The developed metric q was validated using data from saline tank experiments and a retrospective clinical study. Additionally, we show that q may be used to compare the performance of EIT systems using phantom measurements. Results suggest that the calculated metric reflects well the quality of reconstructed EIT images for both phantom and clinical data. The proposed measure can thus be used for real-time assessment of EIT data quality and, hence, to indicate the reliability of any derived physiological information.


Subject(s)
Electric Impedance , Tomography/methods , Acute Lung Injury/physiopathology , Adult , Child , Electrodes , Humans , Male , Phantoms, Imaging , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Tomography/instrumentation
12.
Med Eng Phys ; 35(9): 1256-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23414917

ABSTRACT

Most medical implants run on batteries, which require costly and tedious replacement or recharging. It is believed that micro-generators utilizing intracorporeal energy could solve these problems. However, such generators do not, at this time, meet the energy requirements of medical implants.This paper highlights some essential aspects of designing and implementing a power source that scavenges energy from arterial expansion and contraction to operate an implanted medical device. After evaluating various potentially viable transduction mechanisms, the fabricated prototype employs an electromagnetic transduction mechanism. The artery is inserted into a laboratory-fabricated flexible coil which is permitted to freely deform in a magnetic field. This work also investigates the effects of the arterial wall's material properties on energy harvesting potential. For that purpose, two types of arteries (Penrose X-ray tube, which behave elastically, and an artery of a Göttinger minipig, which behaves viscoelastically) were tested. No noticeable difference could be observed between these two cases. For the pig artery, average harvestable power was 42 nW. Moreover, peak power was 2.38 µW. Both values are higher than those of the current state of the art (6 nW/16 nW). A theoretical modelling of the prototype was developed and compared to the experimental results.


Subject(s)
Arteries/physiology , Blood Pressure , Electricity , Equipment and Supplies , Materials Testing/instrumentation , Elasticity , Equipment Design , Magnetic Fields , Vasoconstriction , Vasodilation , Viscosity
13.
Med Biol Eng Comput ; 51(7): 741-55, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23430327

ABSTRACT

As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 µW according to the first two models and 135 µW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm³.


Subject(s)
Arteries/physiopathology , Bioelectric Energy Sources , Hydrodynamics , Magnetics/instrumentation , Prosthesis Design , Humans , Models, Theoretical , Pulse
14.
Appl Opt ; 49(36): 6917-23, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21173826

ABSTRACT

We demonstrate depth-resolved spectral absorption measurements in the wavelength range from 750 to 850 nm using a broadband light source consisting of three spectrally shifted superluminescent light-emitting diode modules and a low-cost spectrometer-based Fourier-domain optical coherence tomography system. We present the theoretical model and experimental verification of interferences between autocorrelation terms and the signal carrying cross-correlation terms, strongly affecting the absorption measurements. A simple background subtraction, minimizing the artifacts caused by the interferences of autocorrelation and cross-correlation terms, is presented.


Subject(s)
Algorithms , Tomography, Optical Coherence/instrumentation , Tomography, Optical Coherence/methods , Artifacts , Equipment Design , Image Interpretation, Computer-Assisted , Models, Theoretical , Signal Processing, Computer-Assisted , Spectrum Analysis/instrumentation
15.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 1260-3, 2006.
Article in English | MEDLINE | ID: mdl-17946033

ABSTRACT

The problem of resolving superpositions in electromyographic (EMG) signals is considered. The shapes of the motor unit action potentials that make up each superposition are assumed to be known a-priori (known constituent problem). Two different and novel belief propagation algorithms have been developed to solve this problem. These algorithms and simulation results are presented in this paper.


Subject(s)
Algorithms , Artificial Intelligence , Electromyography/methods , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Pattern Recognition, Automated/methods , Humans
16.
J Vis ; 3(10): 586-98, 2003.
Article in English | MEDLINE | ID: mdl-14640882

ABSTRACT

The position, surface area and visual field representation of human visual areas V1, V2 and V3 were measured using fMRI in 7 subjects (14 hemispheres). Cortical visual field maps of the central 12 deg were measured using rotating wedge and expanding ring stimuli. The boundaries between areas were identified using an automated procedure to fit an atlas of the expected visual field map to the data. All position and surface area measurements were made along the boundary between white matter and gray matter. The representation of the central 2 deg of visual field in areas V1, V2, V3 and hV4 spans about 2100 mm2 and is centered on the lateral-ventral aspect of the occipital lobes at Talairach coordinates -29, -78, -11 and 25, -80, -9. The mean area between the 2-deg and 12-deg eccentricities for the primary visual areas was: V1: 1470 mm2; V2: 1115 mm2; and V3: 819 mm2. The sizes of areas V1, V2 and V3 varied by about a factor of 2.5 across individuals; the sizes of V1 and V2 are significantly correlated within individuals, but there is a very low correlation between V1 and V3. These in vivo measurements of normal human retinotopic visual areas can be used as a reference for comparison to unusual cases involving developmental plasticity, recovery from injury, identifying homology with animal models, or analyzing the computational resources available within the visual pathways.


Subject(s)
Visual Cortex/anatomy & histology , Visual Fields/physiology , Visual Pathways/anatomy & histology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging , Visual Cortex/physiology
17.
IEEE Trans Biomed Eng ; 50(1): 58-69, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12617525

ABSTRACT

This paper presents a method to decompose multichannel long-term intramuscular electromyogram (EMG) signals. In contrast to existing decomposition methods which only support short registration periods or single-channel recordings of signals of constant muscle effort, the decomposition software EMG-LODEC (ElectroMyoGram LOng-term DEComposition) is especially designed for multichannel long-term recordings of signals of slight muscle movements. A wavelet-based, hierarchical cluster analysis algorithm estimates the number of classes [motor units (MUs)], distinguishes single MUAPs from superpositions, and sets up the shape of the template for each class. Using three channels and a weighted averaging method to track action potential (AP) shape changes improve the analysis. In the last step, nonclassified segments, i.e., segments containing superimposed APs, are decomposed into their units using class-mean signals. Based on experiments on simulated and long-term recorded EMG signals, our software is capable of providing reliable decompositions with satisfying accuracy. EMG-LODEC is suitable for the study of MU discharge patterns and recruitment order in healthy subjects and patients during long-term measurements.


Subject(s)
Algorithms , Electromyography/methods , Monitoring, Ambulatory/methods , Muscle, Skeletal/physiopathology , Musculoskeletal Diseases/physiopathology , Software , Action Potentials , Adult , Cluster Analysis , Computer Simulation , Diagnosis, Computer-Assisted/methods , False Negative Reactions , False Positive Reactions , Female , Fingers/physiopathology , Humans , Internet , Male , Middle Aged , Models, Neurological , Motor Neurons/classification , Movement , Pattern Recognition, Automated , Porphyrins , Reproducibility of Results , Shoulder/physiopathology , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...