Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Article in English | MEDLINE | ID: mdl-34611363

ABSTRACT

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Subject(s)
Cell Differentiation , Genome , Neural Crest/cytology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Integrases/metabolism , Mice , Models, Biological , Mouse Embryonic Stem Cells/metabolism , Muscle Cells/cytology , Neural Crest/metabolism , Protein Binding , Protein Domains , Proteolysis , Transcription Factors/chemistry , Transcription, Genetic , Cohesins
3.
Curr Genet ; 67(2): 231-235, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33247310

ABSTRACT

Cell aging is the result of deteriorating competence in maintaining cellular homeostasis and quality control. Certain cell types are able to rejuvenate through asymmetric cell division by excluding aging factors, including damaged cellular compartments and extrachromosomal rDNA circles, from entering the daughter cell. Recent findings from the budding yeast S. cerevisiae have shown that gametogenesis represents another type of cellular rejuvenation. Gametes, whether produced by an old or a young mother cell, are granted a renewed replicative lifespan through the formation of a fifth nuclear compartment that sequesters the harmful senescence factors accumulated by the mother. Here, we describe the importance and mechanism of cellular remodeling at the nuclear envelope mediated by ESCRT-III and the LEM-domain proteins, with a focus on nuclear pore biogenesis and chromatin interaction during gamete rejuvenation.


Subject(s)
Cellular Senescence/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Gametogenesis/genetics , Meiosis/genetics , DNA, Ribosomal/genetics , Extrachromosomal Inheritance/genetics , Homeostasis/genetics , Nuclear Envelope/genetics , Rejuvenation/physiology , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...