Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891526

ABSTRACT

Interest in fullerene-based polymer structures has renewed due to the development of synthesis technologies using thin C60 polymers. Fullerene networks are good semiconductors. In this paper, heterostructure complexes composed of C60 polymer networks on atomically thin dielectric substrates are modeled. Small tensile and compressive deformations make it possible to ensure appropriate placement of monolayer boron nitride with fullerene networks. The choice of a piezoelectric boron nitride substrate was dictated by interest in their applicability in mechanoelectric, photoelectronic, and electro-optical devices with the ability to control their properties. The results we obtained show that C60 polymer/h-BN heterostructures are stable compounds. The van der Waals interaction that arises between them affects their electronic and optical properties.

2.
Phys Chem Chem Phys ; 25(44): 30477-30487, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37921407

ABSTRACT

This article deals with the issue of perforating point defects (pores) in a bilayer heterostructure composed of striped borophene and graphene. Three types of non-equivalent vacancies of the minimum size are considered. These include a single vacancy and two double vacancies. The study of the properties and stability of the perforating defects in borophene-graphene heterostructures is important given the increasing role of such structures in membranes for water purification, renewable energy generation, and other osmotic applications. Using the DFT method, the atomic configurations and main energy characteristics of the proposed defects are obtained. The results show that the formation of a single boron vacancy on the borophene side of borophene-graphene requires less energy than the formation of a carbon vacancy in graphene. Comparisons between double vacancies in nanoscale materials are unreliable because different reference systems produce the different chemical potentials. The problem of choosing the reference system for reliable calculation of the vacancy formation energies is posed and discussed. Using borophene-graphene as an example, it is shown that the reference system strongly affects the magnitude and sign of the vacancy formation energy. Hydrogenation is tested to stabilize the proposed defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...