Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(20)2022 10 13.
Article in English | MEDLINE | ID: mdl-36291074

ABSTRACT

Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.


Subject(s)
Ear, Inner , Hearing Loss , Animals , Child, Preschool , Humans , Mice , Ear, Inner/metabolism , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Lipoproteins/metabolism , Membrane Proteins/metabolism , Mutation/genetics , Peroxins/genetics , Plasmalogens
2.
Neurotox Res ; 34(1): 16-31, 2018 07.
Article in English | MEDLINE | ID: mdl-29218504

ABSTRACT

Parkinson's disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, while being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilizing the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, and increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin-lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration.


Subject(s)
Acetylcysteine/analogs & derivatives , Choline O-Acetyltransferase/metabolism , Cysteine Proteinase Inhibitors/toxicity , Galanin/metabolism , Neurons/pathology , Parkinson Disease , Pedunculopontine Tegmental Nucleus/pathology , Acetylcysteine/toxicity , Analysis of Variance , Animals , Disease Models, Animal , Male , Neurons/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Rats, Sprague-Dawley , Substantia Nigra/drug effects , Substantia Nigra/pathology , Time Factors , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...