Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846240

ABSTRACT

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than ß-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


Subject(s)
Allosteric Regulation/physiology , Pain/drug therapy , Receptors, Opioid, mu/metabolism , Allosteric Regulation/drug effects , Analgesia/methods , Analgesics , Analgesics, Opioid/pharmacology , Animals , CHO Cells , Cricetulus , Female , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Morphine , Narcotic Antagonists , Pain Management/methods , Proof of Concept Study , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/drug effects
2.
Front Mol Neurosci ; 13: 5, 2020.
Article in English | MEDLINE | ID: mdl-32038168

ABSTRACT

Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and ßγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.

3.
Br J Pharmacol ; 175(11): 2013-2027, 2018 06.
Article in English | MEDLINE | ID: mdl-29352503

ABSTRACT

BACKGROUND AND PURPOSE: Agonists at µ-opioid receptors (µ-receptors) are used for pain management but produce adverse effects including tolerance, dependence and euphoria. The co-administration of a µ-receptor agonist with a δ-opioid receptor (δ-receptor) antagonist has been shown to produce antinociception with reduced development of some side effects. We characterized the effects of three µ-receptor agonist/δ-receptor antagonist peptidomimetics in vivo after acute and repeated administration to determine if this profile provides a viable alternative to traditional opioid analgesics. EXPERIMENTAL APPROACH: Three µ-receptor agonist / δ-receptor antagonist peptidomimetics, AAH8, AMB46 and AMB47, and morphine were evaluated for the development of tolerance and dependence after 5 days of twice daily treatment with escalating doses of drug (10-50 mg·kg-1 ). Antinociceptive effects were measured in the warm water tail withdrawal assay before and after repeated drug treatment. Physical dependence was evaluated by naltrexone-precipitated withdrawal jumping. The rewarding effects of AAH8 were evaluated using a conditioned place preference (CPP) assay with twice daily conditioning sessions performed for 5 days. KEY RESULTS: Morphine, AAH8, AMB47 and AMB46 all demonstrated acute antinociceptive effects, but repeated administration only produced tolerance in animals treated with morphine and AMB46. Injection of naltrexone precipitated fewer jumps in mice treated repeatedly with AAH8 as compared with morphine, AMB47 or AMB46. Conditioning with morphine, but not AAH8, produced significant CPP. CONCLUSIONS AND IMPLICATIONS: AAH8 may be a better alternative than traditional opioid analgesics, producing antinociception with less development of tolerance and dependence and may be less rewarding than morphine.


Subject(s)
Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Peptidomimetics/administration & dosage , Peptidomimetics/pharmacology , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, mu/agonists , Analgesics, Opioid/chemistry , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Female , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Conformation , Peptidomimetics/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...