Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 22(4): 1015-26, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21455678

ABSTRACT

Implantation of biomaterials like titanium (Ti) causes inflammatory reactions possibly affecting implant functionality. Surface modifications could improve biocompatibility and functionality of implants. Biomembrane-derived phospholipids might be useful as implant coating due to their biomimetic properties. In vitro studies demonstrated beneficial effects for 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphoethanolamin (POPE) as coating regarding interactions with cells and bacteria. Therefore, this in vivo study aimed at examining local inflammatory reactions after implantation of POPE-coated Ti plates. Ti implants with POPE attached non-covalently or covalent via octadecylphosphonic acid (OPA), with OPA alone and uncoated controls were simultaneously implanted intramuscularly in rats for 7, 14 and 56 days. The peri-implant tissue was quantitatively analyzed by immunohistochemistry for total macrophages, tissue macrophages, T cells, antigen-presenting cells and proliferating cells. Overall, both POPE-coated series were comparable to the controls. Furthermore, no differences were found between POPE coating on a covalently linked OPA monolayer and POPE coating dried from solution. Together with earlier in vitro results, this demonstrates the potential of phospholipids for implant surface modification.


Subject(s)
Phospholipids/chemistry , Titanium/chemistry , Animals , Biocompatible Materials/chemistry , Biomimetics , Cell Proliferation , Humans , Immunohistochemistry/methods , Inflammation , Macrophages/cytology , Materials Testing , Organophosphonates/chemistry , Phosphatidylethanolamines/chemistry , Rats , Regenerative Medicine/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...