Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675789

ABSTRACT

African swine fever virus (ASFV) is the etiological agent causing African swine fever (ASF), affecting domestic pigs and wild boar, which is currently the biggest animal epidemic in the world and a major threat to the swine sector. At present, some safety concerns about using LAVs against ASFV still exist despite a commercial vaccine licensed in Vietnam. Therefore, the efforts to identify virulence factors and their mechanisms, as well as to generate new vaccine prototypes, are of major interest. In this work, we have identified the MGF505-2R gene product as an inhibitor of the cGAS/STING pathway, specifically through its interaction with STING protein, controlling IFN-ß production. In addition, immunization of a recombinant virus lacking this gene, Arm/07-ΔMGF505-2R, resulted in complete attenuation, demonstrating its involvement in ASFV virulence. Finally, immunization with Arm/07-ΔMGF505-2R induced the generation of antibodies and proved to be partially protective against virulent ASFV strains. These results identify MGF505-2R, as well as its mechanism of action, as a gene contributing to understanding the molecular mechanisms of ASFV virulence, which will be of great value in the design of future vaccine prototypes.

2.
J Vet Res ; 67(4): 503-508, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130453

ABSTRACT

Introduction: The molecular contamination of an animal facility was investigated during and after an infection with highly pathogenic African swine fever virus (ASFV) among domestic pigs. The investigation evaluated the risk of indirect transmission of the disease and indicated points that may facilitate cleaning and disinfection processes. Material and Methods: Six domestic pigs were infected oronasally with the highly pathogenic Georgia 2007 strain. Environmental samples from the floors, walls, rubber floor mats, feeders, drinkers, high-efficiency particulate-absorbing filter covers and doors were collected 7 days post infection (dpi), 7 days later and 24 h after disinfection of the facility. The samples were investigated by real-time PCR and in vitro assays to find genetic traces of ASFV and infectious virus. Results: Typical clinical outcomes for ASF (i.e. fever, apathy, recumbency and bloody diarrhoea) were observed, and all animals died or required euthanasia before or at 9 dpi. No infectious virus was found in environmental samples at the sampling time points. Genetic traces of ASFV were found in all locations except the doors. The initial virus load was calculated using real-time PCR threshold cycle values and was the highest at the drain. A statistically significant decrease of virus load over time was found on non-porous surfaces mechanically cleaned by water (the floor and drain). Conclusion: The gathered data confirmed different routes of virus excretion (oral and nasal, faeces and urine, and aerosol) and showed virus locations and different initial concentrations in the animal facility. Maintaining the facility with mechanical cleaning and using personal protection (gloves) and hand disinfection may efficiently minimise the risk of further virus spread. Together with the results of previously published studies, the present investigations' failure to isolate infectious virus may suggest that if stable environmental conditions are assured, the time needed before the introduction of new herds into previously ASF-affected farm facilities could be shortened and in this way the economic losses caused by the disease outbreak mitigated.

3.
Front Public Health ; 11: 1129776, 2023.
Article in English | MEDLINE | ID: mdl-37151595

ABSTRACT

Output-based standards set a prescribed target to be achieved by a surveillance system, but they leave the selection of surveillance parameters, such as test type and population to be sampled, to the responsible party in the surveillance area. This allows proportionate legislative surveillance specifications to be imposed over a range of unique geographies. This flexibility makes output-based standards useful in the context of zoonotic threat surveillance, particularly where animal pathogens act as risk indicators for human health or where multiple surveillance streams cover human, animal, and food safety sectors. Yet, these systems are also heavily reliant on the appropriate choice of surveillance options to fit the disease context and the constraints of the organization implementing the surveillance system. Here we describe a framework to assist with designing, implementing, and evaluating output-based surveillance systems showing the effectiveness of a diverse range of activities through a case study example. Despite not all activities being relevant to practitioners in every context, this framework aims to provide a useful toolbox to encourage holistic and stakeholder-focused approaches to the establishment and maintenance of productive output-based surveillance systems.


Subject(s)
Risk Factors , Animals , Humans
4.
Article in English | MEDLINE | ID: mdl-36361233

ABSTRACT

Meat of horses may be infested with nematodes of the genus Trichinella spp. and can cause serious disease in humans. Rules for the carcasses sampling of species susceptible to Trichinella spp. infection and examination are laid down in Commission Regulation 1375/2015, where the magnetic stirrer method for pooled-sample digestion is recommended (Commission Regulation 1478/2020). All personnel involved in the examination should be properly trained and participate in quality control programs. Proficiency tests (PTs) play a key role in the quality verification process. This paper presents the results of PTs organized for 68 Polish laboratories in 2014-2019. Results were assessed qualitatively at three levels of sample contamination (0, 3, 5 larvae) and quantitatively at one level (5 larvae). The laboratories have achieved the average correct qualitative results 100%, 96.2% and 96.8% for the samples contaminated with 0, 3 and 5 larvae, respectively. In the quantitative evaluation, an average 94.1% of the reported results were correct. The data from PTs enabled us to define, for the first time, validation parameters of the digestion method for the horse meat matrix in a large-scale experiment including: specificity (100%), sensitivity (95.6%), accuracy (97.1%), the limit of detection (LOD) (1.14 ≈ 1) and the limit of quantification (LOQ) (3.42 ≈ 3).


Subject(s)
Trichinella , Trichinellosis , Humans , Horses , Animals , Food Inspection/methods , Food Parasitology , Trichinellosis/diagnosis , Trichinellosis/veterinary , Meat , Larva , Digestion , Magnetic Phenomena
5.
Pathogens ; 11(5)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631125

ABSTRACT

Feline trichomonosis occurs worldwide, with gastrointestinal symptoms such as chronic large-bowel diarrhea and abdominal pain. The inclusion of molecular methods in diagnostic and epidemiological studies has necessitated an effective method for extracting DNA from feces. We tested four extraction commercial kits: ZR Fecal DNA MiniPrep (50 preps) (Zymo Research, Irvine, CA, USA), QIAamp® DNA Stool Mini Kit (Qiagen Inc., Valencia, CA, USA), UltraClean Fecal DNA Kit (50 preps) (MO BIO, San Diego, CA, USA), and Sherlock AX/100 isolations (A&A Biotechnology, Gdynia, Poland). We assessed the sensitivity of detection of Tritrichomonas foetus in spiked fecal samples for the four kits combined with two molecular assays: PCR and LAMP. The extraction efficacy was quantified using defined aliquots of fecal samples spiked with 5 µL of suspensions containing serial dilutions of trophozoites (0.1; 1; 10; 100; 1000; 10,000), with six replicates for each concentration. In our study, we proved that the ZR Fecal DNA MiniPrep (50 preps) kit combined with LAMP and PCR had the highest efficiency among all the compared methods for the detection of feline T. foetus from fecal samples.

6.
Pathogens ; 11(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35215100

ABSTRACT

The aim of the study was to investigate the occurrence of Alaria alata (Goeze, 1782) in fifty-one grass snakes (Natrix natrix) collected in Gostyninsko-Wloclawski Landscape Park. Each snake was tested for the presence of A. alata mesocercariae using the AMT and MSM methods. 18S ribosomal RNA (18S rRNA), cytochrome C oxidase subunit I (COI) and 28S ribosomal RNA (28S rRNA) genes were amplified by PCR and sequenced for the purpose of species identification. Fifty grass snakes were infected with helminths. The molecular characterization of trematodes allowed us to identify A. alata in 30 snakes (58.8%), Conodiplostomum spathula (Dubois, 1937) in 16 snakes (31.3%), Strigea falconis (Szidat, 1928) in 12 snakes (23.5%), and Neodiplostomum attenuatum (Linstow, 1906) in 2 snakes (3.9%), while, in 4 snakes (7.8%), the trematodes species could not be identified. Based on the analysis of 18S and COI sequences, Crenosoma vulpis (Dujardin, 1845) was identified in four snakes (7.8%), while nematodes collected from three snakes remained unidentified. The tapeworm sample was identified as Ophiotaenia. The obtained results indicate that grass snakes are an excellent vector of A. alata and may be a potential source of infection for mammals, e.g., wild boars and foxes, which results in an increased risk of alariosis for consumers of raw or undercooked game meat.

7.
Pathogens ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215189

ABSTRACT

Anisakis simplex sensu stricto (s.s.) L3 larvae are one of the major etiological factors of human anisakiasis, which is one of the most important foodborne parasitic diseases. Nevertheless, to date, Anisakis secretome proteins, with important functions in nematode pathogenicity and host-parasite interactions, have not been extensively explored. Therefore, the aim of this study was to identify and characterize the excretory-secretory (ES) proteins of A. simplex L3 larvae. ES proteins of A. simplex were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the identified proteins were then analyzed using bioinformatics tools. A total of 158 proteins were detected. Detailed bioinformatic characterization of ES proteins was performed, including Gene Ontology (GO) analysis, identification of enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, protein family classification, secretory pathway prediction, and detection of essential proteins. Furthermore, of all detected ES proteins, 1 was identified as an allergen, which was Ani s 4, and 18 were potential allergens, most of which were homologs of nematode and arthropod allergens. Nine potential pathogenicity-related proteins were predicted, which were predominantly homologs of chaperones. In addition, predicted host-parasite interactions between the Anisakis ES proteins and both human and fish proteins were identified. In conclusion, this study represents the first global analysis of Anisakis ES proteins. The findings provide a better understanding of survival and invasion strategies of A. simplex L3 larvae.

8.
Foods ; 11(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35206002

ABSTRACT

Trichinellosis is a zoonotic disease caused by the nematodes of the genus Trichinella. Infection takes place through the consumption of infected meat containing live larvae. The only way to prevent the disease is to break its epizootic chain. To ensure effective control of Trichinella spp., a range of preventive and control measures have been undertaken. These efforts have been focused on controlling Trichinella in domestic pigs, the main source of the disease. Artificial digestion is also the reference point for other methods for Trichinella risk control. Descriptive data validation of the digestion assay was presented in 1998 based on results published by scientific laboratories. Herein, we supplement those data by characterizing the method's performance in inter-laboratory comparisons. The source of data was the results of Proficiency Testing conducted in 2015-2019. Samples were contaminated by 0, 1, 3, and 5 larvae. In total, 7580 samples were examined by the laboratories. Based on Proficiency Testing results, the main parameters characterizing the method performance in field conditions were established as follows: specificity, 97.3%; sensitivity, 86.5%; accuracy, 89.2%; uncertainty, 0.3; limit of detection (LOD), 1 larva; and limit of quantification (LOQ), 3 larvae.

9.
Pathogens ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34358003

ABSTRACT

The aim of this study is to confirm the presence and molecular identification of Echinococcus tapeworms in wolves from south-eastern Poland. An investigation was carried out on the intestines of 13 wolves from south-eastern Poland. The small intestines were divided into three equal segments. Each segment was separately examined using the sedimentation and counting technique (SCT). The detected Echinococcus tapeworms were isolated and identified by PCRs and sequencing (nad1 and cox1 genes). Additionally, DNA isolated from the feces of wolves positive for Echinococcus tapeworms was examined with two diagnostic PCRs. The intestines of one wolf were positive for E. granulosus s.l. when assessed by SCT; the intestine was from a six-year-old male wolf killed in a communication accident. We detected 61 adult tapeworms: 42 in the anterior, 14 in the middle, and 5 in the posterior parts of the small intestine. The PCRs conducted for cox1 and nad1 produced specific products. A sequence comparison with the GenBank database showed similarity to the deposited E. ortleppi (G5) sequences. An analysis of the available phylogenetic sequences showed very little variation within the species of E. ortleppi (G5), and identity ranged from 99.10% to 100.00% in the case of cox1 and from 99.04% to 100.00% in the case of nad1. One of the two diagnostic PCRs used and performed on the feces of Echinococcus-positive animals showed product specific for E. granulosus. This study showed the presence of adult E. ortleppi tapeworms in wolves for the first time.

10.
Pathogens ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917664

ABSTRACT

The prevalence of bovine Tritrichomonas foetus infection has decreased almost to zero in most European countries, such as Poland, which has been Tritrichomonas foetus-free since 1997. However, trichomonosis is a notifiable disease and there is a duty to examine samples from cattle. In this study, we present an unexpected cross-reaction with Honigbergiella-like DNA in a specimen from a bull. The bovine sample was submitted to the Department of Parasitology National Veterinary Research Institute in Pulawy (NVRI) for confirmatory testing after having been examined at the Regional Veterinary Laboratory, during a routine T. foetus diagnosis. Positive results from microscopic observation and cultures were confirmed. Noteworthily, parasites grew on Diamond's medium only after seven days of incubation, while optimal growth of trichomonads is generally observed after two to four days for this medium. Moreover, by using PCR we obtained positive results for the presence of T. foetus. However, sequencing of the amplification product revealed 99.62% identity with Honigbergiella sp. Our data suggest that false-positive results may occur in commonly used PCR tests. Thus, unexpected results should be carefully interpreted.

11.
Animals (Basel) ; 10(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322623

ABSTRACT

(1) Background: Due to the increasing distribution of Echinococcus multilocularis infections in final hosts, epidemiological investigations are important for recognizing the spreading pattern of this parasite and also to estimate risk infection for humans. (2) Methods: Investigations were conducted with two commercial kits dedicated for DNA extraction from feces: ZR Fecal DNA Mini Prep (Zymo Research, Freiburg, Germany) and QIAamp FAST DNA Stool Mini Kit (Qiagen, Hilden, Germany) (marked as Z and Q), together with two common PCR protocols (nested PCR and multiplex PCR). The goal was to compare their efficiency in detecting the genetic material of E. multilocularis in the samples of feces. Stool samples from red foxes were collected in a highly endemic area in Poland. Sedimentation and counting technique (SCT) was used as a reference method. (3) Results: From 48 samples, 35 were positive in SCT. Further investigations showed that 40.0% of samples (from those with SCT positive result) after Z-DNA extraction and 45.7% after Q-DNA extraction gave positive results in nested PCR. In multiplex PCR, positive results were obtained in 54.3% of samples after Z isolation and 48.6% of samples after Q. Additionally, one sample that resulted in being negative in SCT gave a positive result in PCR. The number of worms detected in the intestines had no influence on PCR results. (4) Conclusions: Both of the extraction methods showed similar efficiency in DNA isolation and dealing with inhibitors; however, they showed relatively low sensitivity. This was probably caused by degradation of genetic material in the field-collected samples.

12.
J Parasitol ; 106(5): 572-588, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32906150

ABSTRACT

Anisakis simplex, Pseudoterranova decipiens, and Contracaecum osculatum third-stage larvae (L3) are fish-borne nematodes that can cause human anisakidosis. Although A. simplex is a known source of allergens, knowledge about the allergic potential of P. decipiens and C. osculatum is limited. Therefore, we performed comparative proteomic profiling of A. simplex, P. decipiens, and C. osculatum L3 larvae using liquid chromatography-tandem mass spectrometry. In total, 645, 397, and 261 proteins were detected in A. simplex, P. decipiens, and C. osculatum L3 larvae, respectively. Western blot analysis confirmed the cross-reactivity of anti-A. simplex immunoglobulin (Ig)G antibodies with protein extracts from P. decipiens and C. osculatum L3 larvae. The identified proteins of the Anisakidae proteomes were characterized by label-free quantification and functional analysis, and proteins involved in many essential biological mechanisms, such as parasite survival, were identified. In the proteome of A. simplex 14, the following allergens were identified: Ani s 1, Ani s 2 (2 isomers), Ani s 3 (2 isomers), Ani s 4, Ani s 8, Ani s 9, Ani s 10, Ani s 11-like, Ani s 13, Ani s fructose 1,6-bisphosphatase, Ani s phosphatidylethanolamine-binding protein (PEPB), and Thu a 3.0101. The following 8 allergens were detected in P. decipiens: Ani s 2, Ani s 3 (2 isomers), Ani s 5, Ani s 8, Ani s 9, Ani s PEPB, and Ani s troponin. In C. osculatum 4, the following allergens were identified: Ani s 2, Ani s 5, Ani s 13, and Asc l 3. Furthermore, 28 probable allergens were predicted in A. simplex and P. decipiens, whereas in C. osculatum, 25 possible allergens were identified. Among the putative allergens, heat shock proteins were most frequently detected, followed by paramyosin, peptidyl-prolyl cis-trans isomerase, enolase, and tropomyosin. We provide a new proteomic data set that could be beneficial for the discovery of biomarkers or drug target candidates. Furthermore, our findings showed that in addition to A. simplex, P. decipiens and C. osculatum should also be considered as potential sources of allergens that could lead to IgE-mediated hypersensitivity.


Subject(s)
Allergens/analysis , Ascaridida Infections/parasitology , Ascaridoidea/chemistry , Helminth Proteins/analysis , Proteome/chemistry , Proteomics/methods , Allergens/immunology , Animals , Anisakis , Ascaridoidea/immunology , Blotting, Western , Chromatography, Liquid , Cross Reactions , Electrophoresis, Polyacrylamide Gel , Helminth Proteins/immunology , Humans , Immunoglobulin G/immunology , Isomerism , Larva/chemistry , Larva/immunology , Proteome/immunology , Rabbits , Tandem Mass Spectrometry
13.
Pathogens ; 9(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977528

ABSTRACT

The third-stage larvae (L3) of Anisakis simplex are the most important source of hidden allergens in seafood products. However, there exist no commercial methods for detecting Anisakis proteins in food. Furthermore, only a few methods have been validated for the detection of A. simplex in thermally processed food. The aims of our study are (i) the development and validation of high-sensitivity chemiluminescent (CL) immunoassays for the detection of A. simplex proteins in processed seafood, (ii) and A. simplex antigen detection in common seafood products from Polish markets. We developed and validated CL sandwich ELISA (S-ELISA) and CL competitive ELISA (C-ELISA) methods for A. simplex proteins detection in food, with respective detection limits of 0.5 and 5 ng/mL. The usefulness of the assays for detecting A. simplex proteins in highly processed food was evaluated by examination of autoclaved canned fish spiked with A. simplex larvae (1-8 larvae/200 g). Commercial real-time PCR was unable to detect A. simplex in autoclaved samples at all levels of enrichment with Anisakis larvae. CL-S-ELISA was used to test various types of seafood products from Polish markets. Among all tested products (n = 259), 28% were positive. A. simplex antigens were found mostly (n = 39) in smoked fish products: mackerel, herring, cod, and hake. Other positive samples were found in marinated herrings, canned cod livers, canned mackerels, and surimi sticks. In tuna, Atlantic argentine, anchovy, sardine, sprat, and squid products, A. simplex antigens were not detected. This study provides novel effective tools for the detection of A. simplex proteins in processed food and highlights the potential allergic hazards for Anisakis-sensitized Polish consumers of seafood.

14.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708775

ABSTRACT

Anisakis simplex third-stage larvae are the main source of hidden allergens in marine fish products. Some Anisakis allergens are thermostable and, even highly processed, could cause hypersensitivity reactions. However, Anisakis proteome has not been studied under autoclaving conditions of 121 °C for 60 min, which is an important process in the food industry. The aim of the study was the identification and characterization of allergens, potential allergens, and other proteins of heat-treated A. simplex larvae. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify 470 proteins, including allergens-Ani s 1, Ani s 2, Ani s 3, Ani s 4, Ani s 5-and 13 potential allergens that were mainly homologs of Anisakis spp., Ascaris spp., and Acari allergens. Ani s 2, Ani s 3, Ani s 5, and three possible allergens were found among the top 25 most abundant proteins. The computational analysis allowed us to detect allergen epitopes, assign protein families, and domains as well as to annotate the localization of proteins. The predicted 3D models of proteins revealed similarities between potential allergens and homologous allergens. Despite the partial degradation of heated A. simplex antigens, their immunoreactivity with anti-A. simplex IgG antibodies was confirmed using a Western blot. In conclusion, identified epitopes of allergenic peptides highlighted that the occurrence of Anisakis proteins in thermally processed fish products could be a potential allergic hazard. Further studies are necessary to confirm the IgE immunoreactivity and thermostability of identified proteins.


Subject(s)
Allergens/analysis , Anisakiasis/parasitology , Anisakis/chemistry , Helminth Proteins/analysis , Allergens/metabolism , Animals , Anisakis/metabolism , Fish Products/parasitology , Food Handling , Foodborne Diseases/parasitology , Heat-Shock Response , Helminth Proteins/metabolism , Hot Temperature , Humans , Larva/chemistry , Larva/metabolism , Proteomics , Tandem Mass Spectrometry
15.
Parasit Vectors ; 13(1): 223, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366276

ABSTRACT

BACKGROUND: Toxoplasma gondii infection may pose a severe medical problem especially in a congenital form and as an acquired infection in immunocompromised persons. Raw and undercooked meat of slaughtered animals is regarded as an important source of parasite infection; however, data concerning this issue in Poland are still insufficient. The aim of this study was to estimate the prevalence of T. gondii infection in pigs and cattle slaughtered for human consumption in Poland using serological and molecular methods. METHODS: Sera of 3111 pigs and 2411 cattle from 16 regions (voivodeships) of the country were examined for the presence of anti-T. gondii IgG using the direct agglutination test (DAT). Pepsin-digested samples of diaphragm and heart of seropositive animals were examined for the presence of T. gondii DNA (B1 gene) by nested PCR and real-time PCR, while non-digested samples were only examined by nested PCR. The B1 gene DNA samples were genotyped at 11 genetic markers using multilocus nested PCR-RFLP (Mn-PCR-RFLP) and sequencing. RESULTS: Seropositive DAT results were found in 11.9% of pigs and 13.0% of cattle. The highest seroprevalence was found in pigs from Podkarpackie (32.6%) and in cattle from Mazowieckie (44.6%). Data analysis showed that cattle > 5-10 years-old, as well as cattle and pigs from small farms, and pigs from farms with open production systems, had higher odds of testing seropositive (P < 0.05). Among the examined tissue samples, positive PCR results were found in samples from 12.2% and 10.2% of seropositive pigs and cattle, respectively. Among the samples successfully genotyped by Mn-PCR-RFLP and sequenced, four samples were identified as T. gondii type II and one sample as type I. CONCLUSIONS: The presence of T. gondii antibodies in a substantial proportion of examined pigs and cattle as well as the detection of parasite DNA in their tissues highlight a potential health risk to the consumers in Poland.


Subject(s)
Cattle Diseases/parasitology , Meat/parasitology , Seroepidemiologic Studies , Swine Diseases/parasitology , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/parasitology , Agglutination Tests/veterinary , Animals , Antibodies, Protozoan/blood , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , DNA, Protozoan/genetics , Female , Genotype , Humans , Immunoglobulin G/blood , Male , Poland/epidemiology , Polymorphism, Restriction Fragment Length , Real-Time Polymerase Chain Reaction/veterinary , Risk Factors , Swine , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Toxoplasma/genetics , Toxoplasmosis, Animal/epidemiology
16.
Pathogens ; 9(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164185

ABSTRACT

Tritrichomonas foetus is described as a pathogen of cattle and cats and also exhibits commensalism with pigs. In order to estimate the prevalence and determine the risk factors for parasite infection, specimens from animal hosts (cat, pigs, and cattle) from Poland were investigated. To our best knowledge, this is the first such study to examine samples from wild boars (Sus scrofa) for the presence of T. foetus. Data were collected from 117 cats, 172 pigs, 236 wild boars, and 180 cattle. The sensitivity of T. foetus identification was increased by using two molecular assays: PCR and loop-mediated isothermal amplification (LAMP). The prevalence of feline tritrichomonosis was 20.51%, and statistically significant differences were obtained between groups of animals regarding age, breed, number of cats, diarrhea, and place of living. Positive PCR and LAMP results for T. foetus were estimated for 16.28% of pigs, and the obtained data were significantly correlated with age. Conversely, no significant differences were observed concerning the farm size factor. In our survey, no cases of bovine tritrichomonosis were found, which is consistent with the data from the other countries of the European Union. Similarly, all wild boar samples were also T. foetus-negative according to LAMP and PCR.

17.
Int J Parasitol ; 50(3): 227-233, 2020 03.
Article in English | MEDLINE | ID: mdl-32109482

ABSTRACT

Tritrichomonas foetus is a protozoan parasite that colonizes the reproductive tract of cattle as well as the gastrointestinal tract of cats. Bovine tritrichomonosis is a sexually transmitted disease whereas feline tritrichomonosis is thought to be transmitted by the fecal-oral route. Furthermore, T. foetus is known as an essentially apathogenic commensal located in the nasal cavity of pigs. Transmission of T. foetus between the different hosts has to be considered a realistic scenario that may have important implications for the epidemiology of infections and disease. In our study, we generated whole genome sequencing (WGS) data from bovine, feline and porcine T. foetus strains to investigate the genetic (dis)similarities among these diverse strains. As a reference, we used a previously released draft assembly from a bovine T. foetus strain K isolated from an infected bull in Brazil. In particular, we identified single nucleotide polymorphisms (SNPs) and the insertion-deletion (indel) variations within the genomes of the different strains. Interestingly, only a low degree of polymorphism (68 SNPs and indels) was found between the bovine and the porcine strains in terms of variants with a predicted impact of moderate or high and where one species is homozygous for one allele and the other homozygous for the other allele. Conversely, however, a 964 times higher number of such differences was detected by comparing the feline with either the bovine (65,569) or the porcine (65,615) strain. These data clearly indicated a close phylogenetic relationship between bovine and porcine T. foetus but a remarkable genetic distinctness of these two strains from the feline strain. The latter observation was confirmed by PCR-based sequencing of 20 in silico-selected indel markers and five in silico-selected SNP markers that uniformly demonstrated a relatively distant phylogenetic relationship of three independent feline T. foetus isolates in comparison to the bovine and porcine strains investigated. In summary, our comparative genome sequencing approach provided further insights into the genetic diversity of T. foetus in relation to the different host origins of the parasite. Furthermore, our study identified a large number of SNP- and indel-containing sequences that may be useful molecular markers for future epidemiological studies aimed at the elucidation of the transmission patterns of T. foetus within different host species.


Subject(s)
Protozoan Infections, Animal/parasitology , Tritrichomonas foetus/genetics , Whole Genome Sequencing , Animals , Cat Diseases/parasitology , Cats , Cattle , Cattle Diseases/parasitology , Feces , Genetic Variation , Genotype , Genotyping Techniques , Phylogeny , Polymorphism, Single Nucleotide , Swine , Swine Diseases/parasitology , Tritrichomonas foetus/classification , Tritrichomonas foetus/isolation & purification
18.
Int J Parasitol Parasites Wildl ; 11: 46-49, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31890563

ABSTRACT

BACKGROUND: This is the first report of the finding of Trichinella spiralis in beaver meat (Castor fiber) in Poland and Europe. In Poland, the beaver is a strictly protected animal species, except the few regions where high population density leads to economic losses. In these areas, the reduction culling of the animals was introduced. This uncommon hunting game animal is consumed and treated as a delicacy by hunters. However, currently, there is a lack of knowledge on possible risk factors for humans associated with the consumption of beaver meat. This paper presents the result of the study on the occurrence of nematodes of the genus Trichinella in beavers. METHODS: In total, 69 beavers were examined for the presence of Trichinella spp. The 50g samples were taken from each animal and digested separately, according to a procedure based on the EU reference method. The larva DNA was examined by PCR and sequencing. RESULTS: One of the 69 examined beavers was infected. Only one Trichinella larva was detected by the digestion method. The result of PCR confirms the presence of T. spiralis in beaver meat. CONCLUSIONS: This case further confirms the ability of these typical herbivores to be infected with Trichinella spp. This is the second confirmed case of Trichinella spp. infection in beavers in Europe and the first of T. spiralis.

19.
Vet Parasitol ; 273: 17-23, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31442888

ABSTRACT

The protozoan parasite Tritrichomonas foetus may cause severe diarrhea in cats all over the world. In order to evaluate the methodology in coprological molecular diagnosis of feline tritrichomonosis, we compared previously published ("old") and newly developed ("novel") loop-mediated isothermal amplification (LAMP) (targeted to the T. foetus ß-tubulin and the elf1α 1 gene, respectively) as well as an old conventional and an old and novel real-time PCR (all targeted to overlapping regions of T. foetus rDNA) assays regarding their diagnostic sensitivities and specificities. Here, the novel real-time PCR yielded the best methodical performance in that a sensitivity with a detection limit of <0.1 trophozoites (corresponding to ca.<0.13 trophozoites per mg feces) and a maximal specificity for diagnosis of Tritrichomonas spp. was achieved. The other test systems exhibited either an approximately 10-times lower sensitivity (<1 trophozoite corresponding to ca.<1.3 trophozoites per mg feces) (conventional PCR and both LAMP assays) or a lower specificity (old real-time PCR). Conversely, the diagnostic performance assessed with clinical fecal samples from cats demonstrated identical sensitivities (8 of 20 samples tested were positive) for the novel PCR and both LAMP assays. Diagnostic sensitivities were significantly higher than those found for the old real-time (5 positive samples) and conventional PCR (6 positive samples), respectively. Accordingly, our data suggested the novel PCR and both LAMP assays to be well suited molecular tools for direct (i.e. without including an in vitro cultivation step) coprological diagnosis of tritrichomonosis in cats. Interestingly, relative high (novel LAMP, 7 positive samples) to at least moderate (old LAMP, 6 positive samples and 1 sample with equivocal score) diagnostic sensitivities were also achieved by testing clinical samples upon simple visual inspection of colorimetric changes during the LAMP amplification reactions. Accordingly, both LAMP assays may serve as practical molecular tools to perform epidemiological studies on feline (and bovine as well as porcine) tritrichomonosis under simple laboratory conditions.


Subject(s)
Cat Diseases/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Polymerase Chain Reaction/veterinary , Protozoan Infections, Animal/diagnosis , Tritrichomonas foetus , Animals , Cat Diseases/parasitology , Cats , Feces/parasitology , Limit of Detection , Nucleic Acid Amplification Techniques/standards , Polymerase Chain Reaction/standards , Sensitivity and Specificity
20.
Parasit Vectors ; 12(1): 313, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234884

ABSTRACT

BACKGROUND: Alveolar echinococcosis is a dangerous zoonotic disease caused by larval forms of Echinococcus multilocularis. In its life-cycle, the principal definitive host is the red fox; however, domesticated carnivorous animals (dogs and cats) can also act as definitive hosts. Until now, there were no data concerning this infection in cats in Poland. The aim of this study was to estimate the prevalence of E. multilocularis in cats and dogs originating from rural areas and animal shelters in a region characterised by a high prevalence of E. multilocularis in red foxes. METHODS: Samples of faeces were collected from 67 cats and 268 dogs from a rural area (villages and animal shelters) of a highly endemic region in southeastern Poland. Samples were examined using nested PCR (E. multilocularis), multiplex PCR (E. multilocularis, Taenia spp.) and PCR [E. granulosus (s.l.)]. Additionally, faeces were examined microscopically (flotation). Moreover, intestines from 110 red foxes shot in the investigated area were examined (sedimentation and counting technique). RESULTS: Positive PCR results for E. multilocularis were obtained in 4 cats (6.0%) and 4 dogs (1.5%). There were no significant differences between groups of animals (from a shelter and with an owner) concerning the prevalence of E. multilocularis in both cats and dogs. Taenia spp. were found in 10 cats (14.9%) (Taenia taeniaeformis and T. hydatigena) and 26 dogs (9.7%) (T. hydatigena, T. serialis, T. taeniaeformis, T. crassiceps, T. pisiformis and T. ovis) and Mesocestoides litteratus was found in 4 cats (6.0%) and 3 dogs (1.1%). All samples were negative for E. granulosus by PCR. Taking into consideration PCR and flotation results, 29 cats (43.3%) and 73 dogs (27.2%) were infected with helminths (26.9 and 11.9%, respectively, were infected with tapeworms). The highly endemic status of the investigated area was confirmed by examination of red foxes: 48.2% of examined red foxes were infected with E. multilocularis. CONCLUSIONS: To the best of our knowledge, this study reports the presence of E. multilocularis in cats for the first time in Poland and confirms the role of dogs in this infection in highly endemic areas.


Subject(s)
Cat Diseases/epidemiology , Cats/parasitology , Dog Diseases/epidemiology , Echinococcosis/veterinary , Endemic Diseases/veterinary , Animals , Cat Diseases/parasitology , Dog Diseases/parasitology , Dogs/parasitology , Echinococcosis/epidemiology , Echinococcus granulosus/isolation & purification , Echinococcus multilocularis/isolation & purification , Feces/parasitology , Female , Foxes/parasitology , Male , Multiplex Polymerase Chain Reaction , Poland/epidemiology , Prevalence , Rural Population , Taenia/isolation & purification , Taeniasis/epidemiology , Taeniasis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...