Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1336884, 2024.
Article in English | MEDLINE | ID: mdl-38357271

ABSTRACT

Introduction: Fertilizer management is crucial to maintaining a balance between environmental health, plant health, and total crop yield. Farmers are overutilizing fertilizers with a mind set to enhance the productive capacity of the field, which adversely impacts soil fertility and causes serious environmental hazards. To mitigate the issues of over-utilization of fertilizers, controlled-release fertilizers were developed using nitrogen fertilizer (ammonium chloride) loaded on cellulose nanofibres (named CNF*N). Methodology: In this study, the effects of CNF*N were compared with commercial nitrogen fertilizer (ammonium chloride) on Vigna radiata (Mung) under greenhouse conditions. The pot experiment was conducted using six treatments: first treatment was control, where the plant was cultivated (T1); second treatment was T2, where the plant was cultivated with CNF to determine the impact of CNF on the plant; third was T3 where commercial ammonium chloride (24 mg/ 2 kg soil) was added to the plant; fourth was T4, where the plant was loaded with CNF, viz. CNF*N contains 4.8 mg of nitrogen; fifth was T5 CNF*N pellet contains 12 mg of nitrogen, and the last sixth treatment (T6) where CNF*N pellet containing 24 mg of nitrogen. Results: It indicated that the growth parameters were best achieved in T6 treatment. Plant height was at its maximum in the T6 treatment (44.4 ±0.1cm) after the second harvest, whereas the minimum plant height was observed in T1, which was 39.1 ±0.1 cm. Root-to-shoot weight ratio was also maximum in T6 (0.183± 0.02) and minimum in T1 (0.07± 0.01) after second harvesting. The significant difference among the treatments was determined with Tukey's honestly significant difference (HSD). The nitrogen content (available and total) was significantly higher in the T4, T5, and T6 treatments (0.22, 0.25, and 0.28%) as compared to the control treatments (T1 (0.12%), T2 (0.13%), and T3 (0.14%) during the second harvesting stage (90 days), as nitrogen plays a crucial role in the development of vegetative growth in Vigna radiata. The rate of controlled-release nitrogen-fertilizer was found to be optimal in terms of plant growth and soil nutrients; hence, it could potentially play a crucial role in improving soil health and the yield of the crop.

2.
Crit Rev Biotechnol ; 43(6): 851-869, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35815813

ABSTRACT

Graphene has triggered enormous interest in, and exploration of, its applications in diverse areas of science and technology due to its unique properties. While graphene has displayed great potential as a nano-delivery system for drugs and biomolecules in biomedicine, its application as a nanocarrier in agriculture has only begun to be explored. Conventional fertilizers and agricultural delivery systems have a number of disadvantages, such as: fast release of the active ingredient, low delivery efficiency, rapid degradation and low stability that often leads to their over-application and consequent environmental problems. Advanced nano fertilizers with high carrier efficiency and slow and controlled release are now considered the gold standard for promoting agricultural sustainability while protecting the environment. Graphene's attractive properties include large surface area, chemical stability, mechanical stability, tunable surface chemistry and low toxicity making it a promising material on which to base agricultural delivery systems. Recent research has demonstrated considerable success in the use of graphene for agricultural applications, including its utilization as a delivery vehicle for plant nutrients and crop protection agents, as well as in post-harvest management of crops. This review, therefore, presents a comprehensive overview of the current status of graphene-based nanocarriers in agriculture. Additionally, the review outlines the surface functionalization methods used for effective molecular delivery, various strategies for nano-vehicle design and the underlying features necessary for a graphene-based agro-delivery system. Finally, the review discusses directions for further research in optimization of graphene-based nanocarriers.


Subject(s)
Drug Delivery Systems , Graphite , Graphite/chemistry , Agriculture , Fertilizers
3.
Appl Microbiol Biotechnol ; 106(11): 4237-4250, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35657436

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and beneficial bacteria are found naturally associated with most terrestrial plant roots. While it is now well known that bacteria colonize AMF and can form aggregates and biofilms, little is known about how interactions between bacterial communities and AMF take place under both in situ and in vitro conditions. We investigated the impact of inoculation with AMF-associated bacteria (AABs) of AMF by in vitro recreation of the interaction on synthetic growth media in a two-compartment Petri plate system. The inoculated AABs were found to be associated with the mycorrhizal co-culture and were found to migrate along growing AMF hyphae and to be associated with the spore surface. AABs differentially influenced the growth of the AMF and their functional capability demonstrated by analysis of phosphate solubilization, nitrogen fixation, and biofilm formation. We have thus characterized these important interactions adding to a further understanding of the synergistic relationship between the two cross-kingdom microbial partners. KEY POINTS: • An in vitro assay was utilized to recreate functional biofilms with AMF-associated bacteria. • AMF-associated bacteria formed a biofilm and enhanced sporulation of Rhizophagus irregularis. • AMF-bacterial interactions through biofilm formation influence the functional capability of both partners.


Subject(s)
Mycorrhizae , Bacteria , Biofilms , Plant Roots/microbiology , Symbiosis
4.
Microbiol Res ; 256: 126940, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34923238

ABSTRACT

Beneficial ecosystem services provided by arbuscular mycorrhizal fungi (AMF) are the outcome of their synergistic actions with diverse bacterial communities (AMF-associated bacteria; AAB) living in strict association with AMF hyphae and spores. Herein, bacterial diversity associated with 6 AMF species from 33 different co-cultures belonging to order Glomerales and Diversisporales were identified, using a combination of culture-dependent functional analyses and amplicon sequencing. Overall, 231 bacterial strains were isolated from the AMF spores and hyphae which covered 30 bacterial genera and 52 species. Hierarchical clustering based on plant growth promoting traits identified 9 clades comprising diverse bacterial genera with clades 7, 8 and 9 representing the most functionally rich AAB. High-throughput amplicon sequencing across a small subset of 8 AMF co-cultures spread across 3 AMF genera identified Operational Taxonomic Units belonging to 118 bacterial genera. The study revealed a greater diversity of AAB from spores of in vitro transformed AMF root co-cultures rather than in situ, pot AMF cultures. Functionally active, culturable AABs with multiple plant growth promoting traits such as phosphate solubilisation, nitrogen fixation, biofilm formation, enzyme and plant growth regulator production along with biocontrol activity were identified. These properties could be utilized individually and/or as consortia with AMF, as biological growth enhancers.


Subject(s)
Glomeromycota , Mycobiome , Mycorrhizae , Ecosystem , Soil Microbiology
5.
BMC Genomics ; 21(1): 821, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228533

ABSTRACT

BACKGROUND: Small RNAs (sRNAs) are non-coding RNAs known to regulate various biological functions such as stress adaptation, metabolism, virulence as well as pathogenicity across a wide range of bacteria, mainly by controlling mRNA stabilization or regulating translation. Identification and functional characterization of sRNAs has been carried out in various plant growth-promoting bacteria and they have been shown to help the cells cope up with environmental stress. No study has been carried out to uncover these regulatory molecules in the diazotrophic alpha-proteobacterium Azospirillum brasilense Sp245 to date. RESULTS: Expression-based sRNA identification (RNA-seq) revealed the first list of ~ 468 sRNA candidate genes in A. brasilense Sp245 that were differentially expressed in nitrogen starvation versus non-starved conditions. In parallel, in silico tools also identified 2 of the above as candidate sRNAs. Altogether, putative candidates were stringently curated from RNA-seq data based on known sRNA parameters (size, location, secondary structure, and abundance). In total, ~ 59 significantly expressed sRNAs were identified in this study of which 53 are potentially novel sRNAs as they have no Rfam and BSRD homologs. Sixteen sRNAs were randomly selected and validated for differential expression, which largely was found to be in congruence with the RNA-seq data. CONCLUSIONS: Differential expression of 468 A. brasilense sRNAs was indicated by RNA-seq data, a subset of which was confirmed by expression analysis. Four of the significantly expressed sRNAs were not observed in nitrogen starvation while 16 sRNAs were found to be exclusively expressed in nitrogen depletion. Putative candidate sRNAs identified have potential mRNA targets primarily involved in stress (abiotic and biotic) adaptability; regulation of bacterial cellular, biological and molecular pathways such as nitrogen fixation, polyhydroxybutyrate synthesis, chemotaxis, biofilm formation and transcriptional regulation. In addition to directly influencing bacteria, some of these sRNAs also have targets influencing plant-microbe interactions through adhesion of bacteria to plant roots directly, suppressing host response, inducing plant defence and signalling.


Subject(s)
Azospirillum brasilense , RNA, Small Untranslated , Azospirillum brasilense/genetics , Gene Expression Regulation, Bacterial , Nitrogen , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Sequence Analysis, RNA
6.
Sci Total Environ ; 703: 134892, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31767299

ABSTRACT

Biochar, a carbonaceous porous material produced from the pyrolysis of agricultural residues and solid wastes has been widely used as a soil amendment. Recent publications on biochar are primarily focussed with its application in climatic aspects, contaminant immobilization, soil amendment strategies, nutrient recovery, engineered material production and waste-water treatment. Numerous studies have reported the positive attribute of biochar's nutrient value that helps in improving plant growth and fertilizer use efficiency. The renewability, low-cost, high porosity, high surface area and customizable surface chemistry of biochar offers ample prospect in several engineering applications, some of which needs significant attention. This review aims at systematically assessing the uses of biochar as a potential carrier material for delivery of agrochemicals and microbes. The key parameters of biochar that are crucial to assess the potential of any material to be used for delivery purposes are discussed. The parameters such as the physicochemical properties of biochar, the mechanistic aspects of adsorption and release of agrochemicals and microbes from biochar, comparative assessment of biochar over other carrier materials, long-term effects of biochar and the economic and environmental benefits of biochar are discussed in detail. At the end, a brief perspective has also been laid out to discuss how nano-interventions could further be helpful to tailor biochar properties useful for delivery applications.


Subject(s)
Charcoal , Adsorption , Soil , Soil Pollutants
7.
Nanoscale Res Lett ; 13(1): 298, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30251124

ABSTRACT

Resistance to quinolone antibiotics has been a serious problem ever since nalidixic acid was introduced into clinical medicine. Over time, resistance of pathogenic microbes to nalidixic acid led to the design of novel variants to revive its potential application. In the present work, a series of eight nanoformulations of nalidixic acid-based diacyl and sulfonyl acyl hydrazine derivatives were prepared. All nanoformulations were found to be stable at different storage temperatures. Antibacterial and anticandida activity of the eight nanoformulations presented encouraging results when compared with their non-nano parent counterparts. The nanoformulations of chloro, furanyl, and sulfonyl acyl substituted derivatives of nalidixic acid displayed most promising results (MIC ranging from 50 to 100 µg mL-1) against the tested bacteria and yeast. Among the screened bacteria, Acinetobacter baumannii displayed maximum sensitivity to the above nanoformulations. Biosafety study on the mammalian model-wax moth, Galleria mellonella-showed that all eight prepared nanoformulations were absolutely nontoxic to the larvae and subsequent pupae and hence may likely have no or low toxicity against mammalian systems.

8.
Front Microbiol ; 8: 284, 2017.
Article in English | MEDLINE | ID: mdl-28286498

ABSTRACT

Fluorescent Pseudomonas strain Psd is a soil isolate, possessing multiple plant growth promoting (PGP) properties and biocontrol potential. In addition, the strain also possesses high Zn2+ biosorption capability. In this study, we have investigated the role exopolysaccharides (EPS) play in Zn2+ biosorption. We have identified that alginates are the prime components contributing to Zn2+ biosorption. Deletion of the alg8 gene, which codes for a sub-unit of alginate polymerase, led to a significant reduction in EPS production by the organism. We have also demonstrated that the increased alginate production in response to Zn2+ exposure leads to improved biofilm formation by the strain. In the alg8 deletion mutant, however, biofilm formation was severely compromised. Further, we have studied the functional implications of Zn2+ biosorption by Pseudomonas strain Psd by demonstrating the effect on the PGP and biocontrol potential of the strain.

9.
Microbiol Res ; 196: 80-88, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28164793

ABSTRACT

The production of biocontrol factors by Pseudomonads is reported to be controlled at the post-transcriptional level by the GacS/GacA signal transduction pathway. This involves RNA-binding translational repressor proteins, RsmA and RsmE, and the small regulatory RNAs (sRNAs) RsmX, RsmY, and RsmZ. While the former represses genes involved in secondary metabolite production, the latter relieves this repression at the end of exponential growth. We have studied the fluorescent Pseudomonas strain Psd, possessing good biocontrol potential, and confirmed the presence of rsmY and rsmZ by PCR amplification. Gene constructs for all the three small RNAs (RsmX, RsmY and RsmZ) carried on broad host-range plasmid, pME6032 were mobilized into strain Psd. Expression analysis of gacA in the recombinant strains over-expressing rsmX (Psd-pME7320), rsmY (Psd-pME6359) and rsmZ (Psd-pME6918) revealed a significant upregulation of the response regulator. Besides, a remarkable down-regulation of rsmA was also reported in all the strains. The variant strains were found to produce comparatively higher levels of phenazines. Indole acetic acid levels were higher to some extent, and strain Psd-pME6918 also showed elevated production of HCN. The tomato seedlings infected with Fusarium oxysporum and Verticillium dahliae in the presence of culture filtrate of the recombinant strains showed better plant protection response in comparison to the wild-type strain Psd. These results suggest that small RNAs are important determinants in regulation of the biocontrol property of strain Psd.


Subject(s)
Pest Control, Biological , Pseudomonas/genetics , Pseudomonas/metabolism , RNA, Bacterial/genetics , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Escherichia coli/genetics , Fusarium/drug effects , Fusarium/pathogenicity , Indoleacetic Acids/metabolism , Solanum lycopersicum/drug effects , Solanum lycopersicum/microbiology , Phenazines/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Bacterial/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Seedlings/microbiology , Sequence Analysis, DNA , Siderophores/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Activation , Verticillium/drug effects , Verticillium/pathogenicity
10.
Microbiology (Reading) ; 162(12): 2017-2028, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27902405

ABSTRACT

Electromicrobiology has gained momentum in the last 10 years with advances in microbial fuel cells and the discovery of microbial nanowires (MNWs). The list of MNW-producing micro-organisms is growing and providing intriguing insights into the presence of such micro-organisms in diverse environments and the potential roles MNWs can perform. This review discusses the MNWs produced by different micro-organisms, including their structure, composition and mechanism of electron transfer through MNWs. Two hypotheses, metallic-like conductivity and an electron hopping model, have been proposed for electron transfer and we present a current understanding of both these hypotheses. MNWs not only are poised to change the way we see micro-organisms but also may impact the fields of bioenergy, biogeochemistry and bioremediation; hence, their potential applications in these fields are highlighted here.

11.
Front Microbiol ; 7: 1134, 2016.
Article in English | MEDLINE | ID: mdl-27486454

ABSTRACT

Microbial nanowires (MNWs) can play an important role in the transformation and mobility of toxic metals/metalloids in environment. The potential role of MNWs in cell-arsenic (As) interactions has not been reported in microorganisms and thus we explored this interaction using Synechocystis PCC 6803 as a model system. The effect of half maximal inhibitory concentration (IC50) [~300 mM As (V) and ~4 mM As (III)] and non-inhibitory [4X lower than IC50, i.e., 75 mM As (V) and 1 mM As (III)] of As was studied on Synechocystis cells in relation to its effect on Chlorophyll (Chl) a, type IV pili (TFP)-As interaction and intracellular/extracellular presence of As. In silico analysis showed that subunit PilA1 of electrically conductive TFP, i.e., microbial nanowires of Synechocystis have putative binding sites for As. In agreement with in silico analysis, transmission electron microscopy analysis showed that As was deposited on Synechocystis nanowires at all tested concentrations. The potential of Synechocystis nanowires to immobilize As can be further enhanced and evaluated on a large scale and thus can be applied for bioremediation studies.

12.
Antonie Van Leeuwenhoek ; 109(3): 475-80, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26754102

ABSTRACT

Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.


Subject(s)
Nanowires/ultrastructure , Nostoc/ultrastructure , Nostoc/physiology
13.
Antonie Van Leeuwenhoek ; 108(5): 1213-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26319534

ABSTRACT

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.


Subject(s)
Microcystis , Nanowires , Synechocystis , Computational Biology/methods , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/ultrastructure , Microcystis/physiology , Microcystis/ultrastructure , Microscopy, Atomic Force , Models, Molecular , Protein Conformation , Synechocystis/physiology , Synechocystis/ultrastructure
14.
Res Microbiol ; 166(3): 174-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25700632

ABSTRACT

Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.


Subject(s)
Azospirillum brasilense/genetics , Azospirillum brasilense/metabolism , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Sorghum/microbiology , Arginine/metabolism , Azospirillum brasilense/growth & development , Bacterial Proteins/genetics , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Microscopy, Electron, Scanning , Nitric Oxide/isolation & purification , Plant Roots/microbiology , Plant Roots/ultrastructure , Signal Transduction , Sorghum/growth & development , Tryptophan/metabolism
15.
J Basic Microbiol ; 55(5): 543-53, 2015 May.
Article in English | MEDLINE | ID: mdl-24913042

ABSTRACT

Bacterial biosynthesis of the phytohormone, indole-3-acetic acid (IAA) is well established and along with the diffusible gaseous molecule, nitric oxide (NO) is known to positively regulate the developmental processes of plant roots. IAA and NO act as signaling molecules in plant-microbe interactions as they modulate the gene expression in both, plants and microorganisms. Although IAA and NO may not be required for essential bacterial physiological processes, numerous studies point towards a crosstalk between IAA and NO in the rhizosphere. In this review, we describe various IAA and NO-responsive or sensing genes/proteins/regulators. There is also growing evidence for the interaction of IAA and NO with other plant growth regulators and the involvement of NO with the quorum sensing system in biofilm formation and virulence. This interactive network can greatly impact the host plant-microbe interactions in the soil. Coupled with this, the specialized σ(54) -dependent transcription observed in some of the IAA and NO-influenced genes can confer inducibility to these traits in bacteria and may allow the expression of IAA and NO-influenced microbial genes in nutrient limiting or changing environmental conditions for the benefit of plants.


Subject(s)
Bacteria/metabolism , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Plant Growth Regulators/metabolism , Bacteria/drug effects , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Plants/drug effects
16.
Antimicrob Agents Chemother ; 56(4): 1845-53, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22290963

ABSTRACT

Since the 2006 discovery of the Acinetobacter baumannii strain AYE AbaR1 resistance island, similar elements have been reported in numerous members of this species. As AbaR1 is distantly related to Tn7, we have renamed it TnAbaR1. TnAbaR transposons are known to carry multiple antibiotic resistance- and efflux-associated genes, although none have been experimentally studied en bloc. We deleted the TnAbaR transposon in A. baumannii A424, which we have designated TnAbaR23, and characterized independent deletion mutants DCO163 and DCO174. The NotI pulsed-field gel electrophoresis (PFGE) profile of strain DCO174 was consistent with targeted deletion of TnAbaR23 alone, but strain DCO163 apparently harbored a second large genomic deletion. Nevertheless, "subtractive amplification" targeting 52 TnAbaR and/or resistance-associated loci yielded identical results for both mutants and highlighted genes lost relative to strain A424. PCR mapping and genome sequencing revealed the entire 48.3-kb sequence of TnAbaR23. Consistent with TnAbaR23 carrying two copies of sul1, both mutants exhibited markedly increased susceptibility to sulfamethoxazole. In contrast, loss of tetAR(A) resulted in only a minor and variable increase in tetracycline susceptibility. Despite not exhibiting a growth handicap, strain DCO163 was more susceptible than strain DCO174 to 9 of 10 antibiotics associated with mutant-to-mutant variation in susceptibility, suggesting impairment of an undefined resistance-associated function. Remarkably, despite all three strains sharing identical gyrA and parC sequences, the ciprofloxacin MIC of DCO174 was >8-fold that of DCO163 and A424, suggesting a possible paradoxical role for TnAbaR23 in promoting sensitivity to ciprofloxacin. This study highlights the importance of experimental scrutiny and challenges the assumption that resistance phenotypes can reliably be predicted from genotypes alone.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/microbiology , Chromosome Mapping , Conjugation, Genetic , Culture Media , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Gene Deletion , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Mutation/genetics , Plasmids/genetics , Polymerase Chain Reaction
17.
J Basic Microbiol ; 52(2): 123-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21656820

ABSTRACT

The key to improving plant productivity is successful bacterial-plant interaction in the rhizosphere that can be maintained in the environment. The results presented here confirm Azospirillum brasilense strain SM as a competent plant growth promoting bacterium over mid- and long-term associations with sorghum. This study establishes that plant growth can be directly correlated with the associated bacterium's indole-3-acetic acid (IAA) production capability as IAA over-expressing variants, SMp30 and SMΔi3-6 fared better than the wild type strain. The auxin antagonist, p-chlorophenoxy isobutyric acid confirmed the role of bacterial IAA in plant growth promotion and verified the presence of larger amount of IAA available to the seeds on inoculation with IAA over-expressing mutants. Microscopic analysis identified the bacterial association at root tips, root-shoot junction and elongation zone and their surface colonizing nature. Scanning electron microscopy identified larger number of root hairs and extensive exopolysaccharide covering in comparison to untreated ones. In addition, vibroid-shaped Azospirilla attached by means of fibrillar material were dispersed along the elongation zone. The notable difference with IAA over-expressing variants was enhanced number of root hairs. Thus, the variant strains may be more efficient surface colonizers of the sorghum root and used as superior bio-inoculants for improving plant productivity.


Subject(s)
Azospirillum brasilense/growth & development , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Sorghum/microbiology , Azospirillum brasilense/metabolism , Germination , Microscopy, Electron, Scanning , Plant Roots/microbiology , Plant Roots/ultrastructure , Rhizosphere , Seeds/growth & development , Seeds/microbiology , Soil Microbiology , Sorghum/growth & development
18.
Appl Environ Microbiol ; 78(2): 471-80, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22081580

ABSTRACT

Experimental and in silico PCR analysis targeting ISAba11 and TnAbaR islands in 196 epidemiologically unrelated Acinetobacter strains representative of ≥19 species were performed. The first two Acinetobacter baumannii ISAba11 elements identified had been found to map to the same site on TnAbaR transposons. However, no further evidence of physical linkage between the two elements was demonstrated. Indeed, examination of 25 definite or putative insertion sites suggested limited sequence specificity. Importantly, an aacC1-tagged version of ISAba11 was shown to actively transpose in A. baumannii. Similarity searches identified nine iso-ISAba11 elements in Acinetobacter and one in Enhydrobacter and single representatives of four distant homologs in bacteria belonging to the phyla "Cyanobacteria" and Proteobacteria. Phylogenetic, sequence, and structural analyses of ISAba11 and/or its associated transposase (Tnp(ISAba11)) suggested that these elements be assigned to a new family. All five homologs encode transposases with a shared extended signature comprising 16 invariant residues within the N2, N3, and C1 regions, four of which constituted the cardinal ISAba11 family HHEK motif that is substituted for the YREK DNA binding motif conserved in the IS4 family. Additionally, ISAba11 family members were associated with either no flanking direct repeat (DR) or an ISAba11-typical 5-bp DR and possessed variable-length terminal inverted repeats that exhibited extensive intrafamily sequence identity. Given the limited pairwise identity among Tnp(ISAba11) homologs and the observed restricted distribution of ISAba11, we propose that substantial gaps persist in the evolutionary record of ISAba11 and that this element represents a recent though potentially highly significant entrant into the A. baumannii gene pool.


Subject(s)
Acinetobacter/enzymology , Acinetobacter/genetics , Amino Acid Motifs , DNA Transposable Elements , Transposases/genetics , Binding Sites , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genotype , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Transposases/classification
19.
Res Microbiol ; 162(4): 426-35, 2011 May.
Article in English | MEDLINE | ID: mdl-21397014

ABSTRACT

Pseudomonas fluorescens is an important biological component of agricultural soils that bestows a number of direct and indirect beneficial attributes to the plants. We analyzed the biocontrol strain P. fluorescens Psd for indole-3-acetic acid (IAA) biosynthesis and studied the effect of its consequent manipulation on its plant-growth-promoting (PGP) potential. While the indole pyruvic acid (IPyA) pathway commonly associated with PGP bacteria was lacking, the indole acetamide (IAM) pathway generally observed in phytopathogens was expressed in strain Psd. Overexpression of IAM pathway genes iaaM-iaaH, from Pseudomonas syringae subsp. savastanoi drastically increased IAA levels and showed a detrimental effect on sorghum root development. On the other hand, heterologous expression of the indole-3-pyruvate decarboxylase/phenylpyruvate decarboxylase gene (ipdC/ppdC) of the IPyA pathway from the PGP bacterium Azospirillum brasilense SM led to enhancement of the IAA level. A more favorable effect of this recombinant strain on sorghum root growth and development suggests that metabolic engineering could be used to generate strains with improved PGP function.


Subject(s)
Gene Expression , Indoleacetic Acids/metabolism , Plant Growth Regulators/genetics , Pseudomonas fluorescens/metabolism , Sorghum/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Gene Expression Regulation, Bacterial , Pest Control, Biological , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Pseudomonas fluorescens/genetics , Sorghum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...