Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 222(11): 1798-1806, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32905595

ABSTRACT

During April and May 2020, we studied 20 patients hospitalized with coronavirus disease 2019 (COVID-19), their hospital rooms (fomites and aerosols), and their close contacts for molecular and culture evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among >400 samples, we found molecular evidence of virus in most sample types, especially the nasopharyngeal (NP), saliva, and fecal samples, but the prevalence of molecular positivity among fomites and aerosols was low. The agreement between NP swab and saliva positivity was high (89.5%; κ = 0.79). Two NP swabs collected from patients on days 1 and 7 post-symptom onset had evidence of infectious virus (2 passages over 14 days in Vero E6 cells). In summary, the low molecular prevalence and lack of viable SARS-CoV-2 virus in fomites and air samples implied low nosocomial risk of SARS-CoV-2 transmission through inanimate objects or aerosols.


Subject(s)
COVID-19/transmission , COVID-19/virology , Fomites/virology , SARS-CoV-2/physiology , Adult , Aerosols , Aged , Aged, 80 and over , Animals , COVID-19/epidemiology , Chlorocebus aethiops , Environmental Microbiology , Feces/virology , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Saliva/virology , Vero Cells , Viral Load
2.
J Clin Virol ; 128: 104391, 2020 07.
Article in English | MEDLINE | ID: mdl-32403008

ABSTRACT

BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats. OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily. STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types. CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.


Subject(s)
Bird Diseases/diagnosis , Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Swine Diseases/diagnosis , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Bird Diseases/virology , Birds , COVID-19 , Coronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Humans , Pandemics , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2 , Swine , Swine Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...