Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med Res ; 11(1): 23, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637905

ABSTRACT

Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.


Subject(s)
Diabetes Mellitus , Wound Healing , Humans , Wound Healing/physiology , Debridement/methods , Skin , Immunotherapy
2.
Nat Immunol ; 24(7): 1200-1210, 2023 07.
Article in English | MEDLINE | ID: mdl-37277655

ABSTRACT

Inflammation of non-barrier immunologically quiescent tissues is associated with a massive influx of blood-borne innate and adaptive immune cells. Cues from the latter are likely to alter and expand activated states of the resident cells. However, local communications between immigrant and resident cell types in human inflammatory disease remain poorly understood. Here, we explored drivers of fibroblast-like synoviocyte (FLS) heterogeneity in inflamed joints of patients with rheumatoid arthritis using paired single-cell RNA and ATAC sequencing, multiplexed imaging and spatial transcriptomics along with in vitro modeling of cell-extrinsic factor signaling. These analyses suggest that local exposures to myeloid and T cell-derived cytokines, TNF, IFN-γ, IL-1ß or lack thereof, drive four distinct FLS states some of which closely resemble fibroblast states in other disease-affected tissues including skin and colon. Our results highlight a role for concurrent, spatially distributed cytokine signaling within the inflamed synovium.


Subject(s)
Arthritis, Rheumatoid , Humans , Cells, Cultured , Arthritis, Rheumatoid/genetics , Synovial Membrane , Cytokines/metabolism , Fibroblasts
3.
Aging (Albany NY) ; 13(24): 25607-25642, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34968192

ABSTRACT

Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.


Subject(s)
Osteoblasts/drug effects , Osteoclasts/drug effects , Osteocytes/drug effects , Parathyroid Hormone/pharmacology , Receptor, Parathyroid Hormone, Type 1/metabolism , Signal Transduction/drug effects , Animals , Bone Diseases, Metabolic/pathology , Bone Resorption/metabolism , Bone and Bones/cytology , Bone and Bones/drug effects , Bone and Bones/metabolism , Homeostasis/drug effects , Mice , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism
4.
Article in English | MEDLINE | ID: mdl-32612980

ABSTRACT

The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration.

5.
J Biol Chem ; 294(25): 9722-9733, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31068415

ABSTRACT

Bone is a highly metabolic organ that undergoes continuous remodeling to maintain its structural integrity. During development, bones, in particular osteoblasts, rely on glucose uptake. However, the role of glucose metabolism in osteocytes is unknown. Osteocytes are terminally differentiated osteoblasts orchestrating bone modeling and remodeling. In these cells, parathyroid hormone (PTH) suppresses Sost/sclerostin expression (a potent inhibitor of bone formation) by promoting nuclear translocation of class IIa histone deacetylase (HDAC) 4 and 5 and the repression of myocyte enhancer factor 2 (MEF2) type C. Recently, Scriptaid, an HDAC complex co-repressor inhibitor, has been shown to induce MEF2 activation and exercise-like adaptation in mice. In muscles, Scriptaid disrupts the HDAC4/5 co-repressor complex, increases MEF2C function, and promotes cell respiration. We hypothesized that Scriptaid, by affecting HDAC4/5 localization and MEF2C activation, might affect osteocyte functions. Treatment of the osteocytic Ocy454-12H cells with Scriptaid increased metabolic gene expression, cell respiration, and glucose uptake. Similar effects were also seen upon treatment with PTH, suggesting that both Scriptaid and PTH can promote osteocyte metabolism. Similar to PTH, Scriptaid potently suppressed Sost expression. Silencing of HDAC5 in Ocy454-12H cells abolished Sost suppression but not glucose transporter type 4 (Glut4) up-regulation induced by Scriptaid. These results demonstrate that Scriptaid increases osteocyte respiration and glucose uptake by mechanisms independent of HDAC complex inhibition. In osteocytes, Scriptaid, similar to PTH, increases binding of HDAC5 to Mef2c with suppression of Sost but only partially increases receptor activator of NF-κB ligand (Rankl) expression, suggesting a potential bone anabolic effect.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Histone Deacetylase Inhibitors/pharmacology , Hydroxylamines/pharmacology , Osteocytes/metabolism , Parathyroid Hormone/pharmacology , Quinolines/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Animals , Calcium-Regulating Hormones and Agents/pharmacology , Cells, Cultured , Female , Glucose Transporter Type 4/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Osteocytes/cytology , Osteocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...