Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(19): 5306-5314, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722706

ABSTRACT

Optical measurements of electric fields have wide-ranging applications in the fields of chemistry and biology. Previously, such measurements focused on shifts in intensity or frequency. Here, we show that nitrile vibrational lifetimes can report local electric fields through ultrasensitive picosecond mid-infrared-near-infrared double-resonance fluorescence spectro-microscopy on Rhodamine 800. Using a robust convolution fitting approach, we observe that the nitrile vibrational lifetimes are strongly linearly correlated (R2 = 0.841) with solvent reaction fields. Supported by density functional theory, we rationalize this trend through a doorway model of intramolecular vibrational energy redistribution. This work provides new fundamental insights into the nature of vibrational energy flow in large polyatomic molecular systems and establishes a theoretical basis for electric field sensing with vibrational lifetimes, offering a new experimental dimension for probing intracellular electrostatics.

2.
Biomark Insights ; 17: 11772719221105145, 2022.
Article in English | MEDLINE | ID: mdl-35719705

ABSTRACT

Traumatic brain injury (TBI) is not a single disease state but describes an array of conditions associated with insult or injury to the brain. While some individuals with TBI recover within a few days or months, others present with persistent symptoms that can cause disability, neuropsychological trauma, and even death. Understanding, diagnosing, and treating TBI is extremely complex for many reasons, including the variable biomechanics of head impact, differences in severity and location of injury, and individual patient characteristics. Because of these confounding factors, the development of reliable diagnostics and targeted treatments for brain injury remains elusive. We argue that the development of effective diagnostic and therapeutic strategies for TBI requires a deep understanding of human neurophysiology at the molecular level and that the framework of multiomics may provide some effective solutions for the diagnosis and treatment of this challenging condition. To this end, we present here a comprehensive review of TBI biomarker candidates from across the multiomic disciplines and compare them with known signatures associated with other neuropsychological conditions, including Alzheimer's disease and Parkinson's disease. We believe that this integrated view will facilitate a deeper understanding of the pathophysiology of TBI and its potential links to other neurological diseases.

3.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35448255

ABSTRACT

Rapid, on-site diagnostics allow for timely intervention and response for warfighter support, environmental monitoring, and global health needs. Portable optical biosensors are being widely pursued as a means of achieving fieldable biosensing due to the potential speed and accuracy of optical detection. We recently developed the portable engineered analytic sensor with automated sampling (PEGASUS) with the goal of developing a fieldable, generalizable biosensing platform. Here, we detail the development of PEGASUS's sensing hardware and use a test-bed system of identical sensing hardware and software to demonstrate detection of a fluorescent conjugate at 1 nM through biotin-streptavidin chemistry.


Subject(s)
Biosensing Techniques , Environmental Monitoring , Streptavidin
SELECTION OF CITATIONS
SEARCH DETAIL
...