Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34684990

ABSTRACT

We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostructured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involving single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

2.
J Phys Chem Lett ; 12(39): 9672-9676, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34590867

ABSTRACT

The architecture of transparent contacts is of utmost importance for creation of efficient flexible light-emitting devices (LEDs) and other deformable electronic devices. We successfully combined the newly synthesized transparent and durable silicone rubbers and the semiconductor materials with original fabrication methods to design LEDs and demonstrate their significant flexibility. We developed electrodes based on a composite GaP nanowire-phenylethyl-functionalized silicone rubber membrane, improved with single-walled carbon nanotube films for a hybrid poly(ethylene oxide)-metal-halide perovskite (CsPbBr3) flexible green LED. The proposed approach provides a novel platform for fabrication of flexible hybrid optoelectronic devices.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200237

ABSTRACT

We propose and demonstrate both flexible and stretchable blue light-emitting diodes based on core/shell InGaN/GaN quantum well microwires embedded in polydimethylsiloxane membranes with strain-insensitive transparent electrodes involving single-walled carbon nanotubes. InGaN/GaN core-shell microwires were grown by metal-organic vapor phase epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films can stand up to 20% stretching while maintaining efficient operation. Membrane-based LEDs show less than 15% degradation of electroluminescence intensity after 20 cycles of stretching thus opening an avenue for highly deformable inorganic devices.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114110

ABSTRACT

Controlled growth of heterostructured nanowires and mechanisms of their formation have been actively studied during the last decades due to perspectives of their implementation. Here, we report on the self-catalyzed growth of axially heterostructured GaPN/GaP nanowires on Si(111) by plasma-assisted molecular beam epitaxy. Nanowire composition and structural properties were examined by means of Raman microspectroscopy and transmission electron microscopy. To study the optical properties of the synthesized nanoheterostructures, the nanowire array was embedded into the silicone rubber membrane and further released from the growth substrate. The reported approach allows us to study the nanowire optical properties avoiding the response from the parasitically grown island layer. Photoluminescence and Raman studies reveal different nitrogen content in nanowires and parasitic island layer. The effect is discussed in terms of the difference in vapor solid and vapor liquid solid growth mechanisms. Photoluminescence studies at low temperature (5K) demonstrate the transition to the quasi-direct gap in the nanowires typical for diluted nitrides with low N-content. The bright room temperature photoluminescent response demonstrates the potential application of nanowire/polymer matrix in flexible optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...