Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 99(5-1): 052214, 2019 May.
Article in English | MEDLINE | ID: mdl-31212490

ABSTRACT

Stable dissipative solitons are perfect carries of optical information due to remarkable stability of their waveforms that allows the signal transmission with extremely dense soliton packing without losing the encoded information. Apart from unaffected passing of solitons through a communication network, controllable transformations of soliton waveforms are needed to perform all-optical information processing. In this paper we employ the basic model of dissipative optical solitons in the form of the complex Ginzburg-Landau equation with a potential term to study the interactions between two stationary dissipative solitons under the control influences and use those interactions to implement various logic gates. In particular, we demonstrate not, and, nand, or, nor, xor, and xnor gates, where the plain (fundamental soliton) and composite pulses are used to represent the low and high logic levels.

2.
Chaos ; 28(1): 013130, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29390634

ABSTRACT

The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

3.
Opt Lett ; 42(3): 531-534, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146520

ABSTRACT

We propose a mechanism to control propagation of a group of stable dissipative solitons in a nonlinear magneto-optic planar waveguide. The control is realized by means of a spatially inhomogeneous external magnetic field, which is induced by a set of direct conducting wires placed on the top of the guiding layer. The wires are extended in the direction of soliton propagation, and carry electric currents with particular piecewise constant profiles. In order to describe the soliton evolution the one-dimensional cubic-quintic complex Ginzburg-Landau equation has been adapted by tailoring an additional linear term, which is responsible for the magneto-optic effect.

4.
Phys Rev E ; 96(1-1): 012206, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347238

ABSTRACT

We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau equation in which an additional linear term is introduced to account the perturbation from a particular potential of externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide. The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate. In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the waveguide.

SELECTION OF CITATIONS
SEARCH DETAIL
...