Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Photochem Photobiol ; 99(2): 580-592, 2023 03.
Article in English | MEDLINE | ID: mdl-36529885

ABSTRACT

Photosensitized crosslinking of proteins in tissues has many medical applications including sealing wounds, strengthening tissues, and beneficially altering tissue properties. Rose Bengal (RB) is used most frequently as the photosensitizer but is not as efficient as would be desired for broad utilization in medicine. Aggregation of RB, at the high concentrations used for medical treatments, decreases the yield of singlet oxygen, which mediates protein crosslinking. We hypothesized that nanocages that sequester RB would inhibit self-association, increasing photosensitization efficiency. We tested cucurbituril and cyclodextrin nanocages, demonstrating that hydroxypropyl-functionalized cyclodextrins are most effective in inhibiting RB aggregation. For these RB/cyclodextrin solutions, we investigated the effect of nanocaging on the photobleaching and oxygen consumption kinetics under 530 nm LED light in aqueous phosphate-buffered solutions. At 100 µm RB, the initial oxygen consumption rates increased by 58% and 80% compared with uncaged RB for the ß and γ (2-hydroxypropyl) cyclodextrins, respectively. For 1 mm RB, the enhancement in these rates was much greater, about 200% and 300%, respectively. In addition, at 1 mm RB these two cyclodextrins increased the RB photobleaching rate by ~20% and ~75%. These results suggest that nanocages can minimize RB aggregation and may lead to higher-efficiency photo-medical therapies.


Subject(s)
Cyclodextrins , Rose Bengal , Rose Bengal/pharmacology , Photosensitizing Agents/pharmacology , Singlet Oxygen
2.
Photochem Photobiol ; 97(4): 718-726, 2021 07.
Article in English | MEDLINE | ID: mdl-33426677

ABSTRACT

Protein crosslinking photosensitized by rose Bengal (RB2- ) has multiple medical applications and understanding the photosensitization mechanism can improve treatment effectiveness. To this end, we investigated the photochemical efficiencies of monomeric RB2- (RBM 2- ) and dimeric RB2- (RBD 2- ) and the optimal pH for anaerobic RB2- photosensitization in cornea. Absorption spectra and dynamic light scattering (DLS) measurements were used to estimate the fractions of RBM 2- and RBD 2- . RB2- self-photosensitized bleaching was used to evaluate the photoactivity of RBM 2- and RBD 2- . The pH dependence of anaerobic RB2- photosensitization was evaluated in ex vivo rabbit corneas. The 549 nm/515 nm absorption ratio indicated that concentrations > 0.10 mm RB contained RBD 2- . Results from DLS gave estimated mean diameters for RBM 2- and RBD 2- of 0.70 ± 0.02 nm and 1.75 ± 0.13 nm, respectively, and indicated that 1 mm RB2- contained equal fractions of RBM 2- and RBD 2- . Quantum yields for RB2- bleaching were not influenced by RBD 2- in RB2- solutions although accounting for RB2- concentration effects on the reaction kinetics demonstrated that RBD 2- is not a photosensitizer. Optimal anaerobic photosensitization occurred at pH 8.5 for solutions containing 200 mm Arg. These results suggest potential approaches to optimizing RBM 2- -photosensitized protein crosslinking in tissues.


Subject(s)
Rose Bengal/analysis , Animals , Cornea , Dimerization , Photosensitizing Agents/pharmacology , Rabbits
3.
Transl Vis Sci Technol ; 9(8): 24, 2020 07.
Article in English | MEDLINE | ID: mdl-32855871

ABSTRACT

Purpose: Oxygen-independent cornea crosslinking (CXL) using rose bengal (RB) and green light may have unique clinical applications. These studies were designed to gain insight into the arginine (arg)-enhanced anaerobic crosslinking process, to maximize crosslinking efficiency, and to test a clinically feasible method for oxygen-free CXL. Methods: Rabbit corneas were treated ex vivo using 1 mM RB and 532 nm light. RB photodecomposition, monitored by absorption spectrophotometry, was used to optimize arg concentration and to develop an irradiation and re-dying protocol. The minimal effective green light fluence was identified by linear tensile strength measurements. RB penetration into the stroma was determined by fluorescence microscopy. To favor the anaerobic pathway, a contact lens was used to minimize stromal oxygen level during irradiation. Stromal cell toxicity was evaluated by a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Results: RB photodecomposition reached 75% of its maximal effect at 200 mM arg and the optimal fluence increment was 32.7 J/cm2. The minimal effective fluence for cornea stiffening was 65.4 J/cm2. Placement of a contact lens promoted oxygen-independent cornea stiffening, similar to that obtained on isolated, oxygen-deprived cornea. RB penetration into the stroma with arg present was limited to ∼120 µm, about 25% deeper than without arg. Stromal cell toxicity was limited to the depth of RB and arg penetration. Conclusions: An oxygen-independent pathway in cornea for RB-CXL was characterized and optimized, including a possible clinical protocol for its use. Translational Relevance: Oxygen-independent RB-CXL is an efficient and effective process that can be developed further for unique clinical applications.


Subject(s)
Arginine , Rose Bengal , Animals , Collagen , Cornea , Cross-Linking Reagents , Rabbits , Rose Bengal/pharmacology
4.
Invest Ophthalmol Vis Sci ; 61(3): 28, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32186674

ABSTRACT

Purpose: Photoactivated cornea collagen cross-linking (CXL) increases corneal stiffness by initiating formation of covalent bonds between stromal proteins. Because CXL depends on diffusion to distribute the photoinitiator, a gradient of CXL efficiency with depth is expected that may affect the degree of stromal collagen organization. We used second harmonic generation (SHG) microscopy to investigate the differences in stromal collagen organization in rabbit eyes after corneal CXL in vivo as a function of depth and time after surgery. Methods: Rabbit corneas were treated in vivo with either riboflavin/UV radiation (UVX) or Rose Bengal/green light (RGX) and evaluated 1 and 2 months after CXL. Collagen fibers were imaged with a custom-built SHG scanning microscope through the central cornea (350 µm depth, 225 × 225 µm en face images). The order coefficient (OC), a metric for collagen organization, and total SHG signal were computed for each depth and compared between treatments. Results: OC values of CXL-treated corneas were larger than untreated corneas by 27% and 20% after 1 month and 38% and 33% after 2 months for the RGX and UVX, respectively. RGX OC values were larger than UVX OC values by 3% and 5% at 1 and 2 months. The SHG signal was higher in CXL corneas than untreated corneas, both at 1 and 2 months after surgery, by 18% and 26% and 1% and 10% for RGX and UVX, respectively. Conclusions: Increased OC corresponded with increased collagen fiber organization in CXL corneas. Changes in collagen organization parallel reported temporal changes in cornea stiffness after CXL and also, surprisingly, are detected deeper in the stroma than the regions stiffened by collagen cross-links.


Subject(s)
Collagen/metabolism , Corneal Stroma/drug effects , Cross-Linking Reagents , Fluorescent Dyes/pharmacology , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Rose Bengal/pharmacology , Animals , Corneal Stroma/metabolism , Corneal Stroma/pathology , Female , Microscopy , Rabbits , Ultraviolet Rays
5.
Invest Ophthalmol Vis Sci ; 60(7): 2563-2570, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31212308

ABSTRACT

Purpose: Photochemical crosslinking of the sclera is an emerging technique that may prevent excessive eye elongation in pathologic myopia by stiffening the scleral tissue. To overcome the challenge of uniform light delivery in an anatomically restricted space, we previously introduced the use of flexible polymer waveguides. We presently demonstrate advanced waveguides that are optimized to deliver light selectively to equatorial sclera in the intact orbit. Methods: Our waveguides consist of a polydimethylsiloxane cladding and a polyurethane core, coupled to an optical fiber. A reflective silver coating deposited on the top and side surfaces of the waveguide prevents light leakage to nontarget, periorbital tissue. Postmortem rabbits were used to test the feasibility of in situ equatorial sclera crosslinking. Tensometry measurements were performed on ex vivo rabbit eyes to confirm a biomechanical stiffening effect. Results: Metal-coated waveguides enabled efficient light delivery to the entire circumference of the equatorial sclera with minimal light leakage to the periorbital tissues. Blue light was delivered to the intact orbit with a coefficient of variation in intensity of 22%, resulting in a 45 ± 11% bleaching of riboflavin fluorescence. A 2-fold increase in the Young's modulus at 5% strain (increase of 92% P < 0.05, at 25 J/cm2) was achieved for ex vivo crosslinked eyes. Conclusions: Flexible polymer waveguides with reflective, biocompatible surfaces are useful for sclera crosslinking to achieve targeted light delivery. We anticipate that our demonstrated procedure will be applicable to sclera crosslinking in live animal models and, potentially, humans in vivo.


Subject(s)
Cross-Linking Reagents , Optical Fibers , Orbit/drug effects , Photosensitizing Agents/therapeutic use , Riboflavin/therapeutic use , Sclera/metabolism , Ultraviolet Rays , Animals , Biomechanical Phenomena , Coated Materials, Biocompatible , Collagen/metabolism , Elastic Modulus , Orbit/metabolism , Polymers , Rabbits , Silver
6.
Invest Ophthalmol Vis Sci ; 60(6): 1845-1852, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31042790

ABSTRACT

Purpose: Rose bengal (RB)-photosensitized protein crosslinking has been proposed for several applications in the eye. This study identifies oxygen-dependent and oxygen-independent mechanistic pathways in cornea for RB-photosensitized crosslinking to enhance its efficiency for ocular treatments. Methods: Rabbit corneas ex vivo were stained with 1 mM RB and irradiated at 532 nm. RB photobleaching, measured by spectrophotometry and linear tensile strength testing, were performed with and without oxygen present. The effects of sodium azide, D2O, arginine, and ascorbate were used to discriminate between mechanisms involving energy transfer (forming singlet oxygen) and electron transfer (forming radical ions). The influence of corneal depth on RB photobleaching was determined using inclined corneal incisions. Results: RB photobleaching was greater in the presence than the absence of oxygen, enhanced by D2O and partially inhibited by azide, indicating a singlet oxygen pathway. Photobleaching without oxygen was enhanced by arginine and ascorbate and accompanied by a shift in the absorption to shorter wavelengths, suggesting that electron transfer initiates RB photodecomposition. The RB-photosensitized tensile strength increase in air was enhanced by D2O and inhibited by azide. In an O2-free environment, arginine was required for an increase in tensile strength, which matched that attained by irradiation in air without arginine, suggesting an efficient electron transfer pathway. Rapid photobleaching was observed below 80 to 120 µm only when arginine was present. Conclusions: These results indicate that RB photosensitizes crosslinking in cornea by both singlet oxygen and electron transfer mechanisms and that adding enhancers may increase the efficiency of this treatment.


Subject(s)
Collagen/pharmacology , Cornea/metabolism , Cross-Linking Reagents/pharmacology , Light , Photosensitizing Agents/pharmacology , Rose Bengal/pharmacology , Animals , Cornea/cytology , Cornea/drug effects , Fluorescent Dyes/pharmacology , Models, Animal , Rabbits , Spectrophotometry
7.
Photochem Photobiol ; 95(5): 1097-1115, 2019 09.
Article in English | MEDLINE | ID: mdl-31111489

ABSTRACT

This review summarizes research on many of the potential applications of photosensitized crosslinking of tissue proteins in surgery and current knowledge of the photochemical mechanisms underlying formation of the covalent protein-protein crosslinks involved. Initially developed to close wounds or reattach tissues, protein photocrosslinking has also been demonstrated to stiffen and strengthen tissues, decrease inflammatory responses and facilitate tissue bioengineering. These treatments appear to result largely from crosslinks within and between collagen molecules in tissue that typically form by an oxygen-dependent mechanism. Surgical applications discussed include sealing wounds in skin, cornea and bowel; reattaching severed nerves, blood vessels and tendons; strengthening cornea and vein; reducing capsular contracture after breast implants; and regenerating joint cartilage.


Subject(s)
Photosensitizing Agents/chemistry , Proteins/chemistry , Riboflavin/chemistry , Rose Bengal/chemistry , Humans , Tissue Engineering
8.
Invest Ophthalmol Vis Sci ; 59(12): 4821-4830, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30347076

ABSTRACT

Purpose: To study corneal wound healing after two cross-linking techniques using either rose bengal and green light (RGX) or the conventional treatment using riboflavin and UVA radiation (UVX). Methods: Corneas of New Zealand rabbits were monolaterally treated with UVX (21 eyes) or RGX (25 eyes). Treatments involved corneal de-epithelialization (8-mm diameter), soaking with photosensitizer (0.1% riboflavin in 20% dextran for 30 minutes for UVX; 0.1% rose bengal for 2 minutes for RGX), and light irradiation (370 nm, 3 mW/cm2, 30 minutes for UVX; 532 nm, 0.25 W/cm2, 7 minutes for RGX). Contralateral eyes were used as controls. Clinical follow-up included fluorescein staining, haze measurement, and pachymetry. Healing events analyzed after euthanasia at 2, 30, and 60 days included cell death (TUNEL assay), cell proliferation (BrdU [bromodeoxyuridine] immunofluorescence), and differentiation to myofibroblasts (α-SMA [alpha smooth muscle actin] immunohistochemistry). Results: Re-epithelialization and pachymetries were similar after RGX and UVX. The haze from day 1 to 15 was greater after UVX. Cell death was deeper after UVX, being localized in the anterior and middle stroma, and was superficial (anterior third) after RGX. Cell proliferation appeared after 2 days and was localized in the middle and posterior stroma in the UVX group but was superficial in the RGX group. After 60 days the number of stromal cells had not returned to the control number in either group. Conclusions: The deeper and longer-lasting cell damage caused by UVX compared to RGX may underlie the slower cell repopulation after UVX and other differences in healing. Shallower damage and a shorter treatment time suggest that RGX may be appropriate for stiffening thin corneas.


Subject(s)
Corneal Injuries/drug therapy , Cross-Linking Reagents , Fluorescent Dyes/therapeutic use , Photosensitizing Agents/therapeutic use , Riboflavin/therapeutic use , Rose Bengal/therapeutic use , Wound Healing/drug effects , Animals , Cell Count , Cell Proliferation/physiology , Corneal Injuries/physiopathology , Corneal Pachymetry , Disease Models, Animal , Epithelium, Corneal/physiology , Female , In Situ Nick-End Labeling , Light , Rabbits , Re-Epithelialization/physiology , Ultraviolet Rays , Wound Healing/physiology
9.
Cornea ; 37(2): 211-217, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29140861

ABSTRACT

PURPOSE: Watertight closure of perforating corneoscleral lacerations is necessary to prevent epithelial ingrowth, infection, and potential loss of the eye. Complex lacerations can be difficult to treat, and repair with sutures alone is often inadequate. In this study, we evaluated a potentially sutureless technology for sealing complex corneal and scleral lacerations that bonds the amniotic membrane (AM) to the wound using only green light and rose bengal dye. METHODS: The AM was impregnated with rose bengal and then sealed over lacerations using green light to bond the AM to the deepithelialized corneal surface. This process was compared with suture repair of 3 laceration configurations in New Zealand White rabbits in 3 arms of the study. A fourth study arm assessed the side effect profile including viability of cells in the iris, damage to the blood-retinal barrier, retinal photoreceptors, retinal pigment epithelium, and choriocapillaris in Dutch Belted rabbits. RESULTS: Analyses of the first 3 arms revealed a clinically insignificant increase in polymorphonuclear inflammation. In the fourth arm, iris cells appeared unaffected and no evidence of breakdown of the blood-retinal barrier was detected. The retina from green light laser-treated eyes showed normal retinal pigment epithelium, intact outer segments, and normal outer nuclear layer thickness. CONCLUSIONS: The results of these studies established that a light-activated method to cross-link AM to the cornea can be used for sealing complex penetrating wounds in the cornea and sclera with minimal inflammation or secondary effects.


Subject(s)
Amnion/transplantation , Corneal Injuries/surgery , Fluorescent Dyes/therapeutic use , Lacerations/surgery , Photochemotherapy/methods , Rose Bengal/therapeutic use , Scleral Diseases/surgery , Animals , Disease Models, Animal , Lasers, Solid-State/therapeutic use , Rabbits , Sclera/injuries
10.
Invest Ophthalmol Vis Sci ; 58(14): 6292-6298, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29242903

ABSTRACT

Purpose: Interface bonding with corneal crosslinking (CXL) after LASIK using two different photosensitizers was studied ex vivo. Methods: A LASIK flap was created in enucleated rabbit eyes using a femtosecond laser. After the dissection, CXL was performed to seal the interface. In one group interface CXL was performed using rose bengal and green light, whereas in a second group riboflavin and UV-A light was used. In both groups irradiance, radiant exposure, dye concentration, and imbibition time was varied. In a control group, LASIK only was performed. After the procedures, the maximal shear-force required to separate the flap from the stroma was measured. Additionally, corneal transmission spectra were recorded. Results: Optimized parameters for rose bengal/green-light bonding lead to a 2.1-fold increase in shear-force compared with untreated control eyes (P < 0.01). The optimal parameter combination was: irradiance of 180 mW/cm2 for 14 minutes (total radiant exposure 150 J/cm2), rose bengal concentration 0.1%, and an imbibition time of 2 minutes. Optimized riboflavin/UV-A light parameters were 0.5% for 2 minutes with a radiant exposure of 8.1 J/cm2 obtained by an irradiance of 30 mW/cm2 for 4.5 minutes. These optimized parameters lead to a 2-fold increase compared with untreated control eyes (P < 0.01). Optical transmission experiments suggest safety for more posterior structures. Conclusions: Based on ex-vivo results, interface bonding after LASIK using crosslinking with either rose bengal or riboflavin increases the adhesion between flap and stromal bed. In vivo trials are needed to evaluate the temporal evolution of the effect.


Subject(s)
Collagen/therapeutic use , Corneal Stroma/drug effects , Cross-Linking Reagents/pharmacology , Keratomileusis, Laser In Situ , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Postoperative Complications/prevention & control , Animals , Corneal Stroma/pathology , Corneal Stroma/surgery , Disease Models, Animal , Lasers, Excimer/therapeutic use , Myopia/physiopathology , Myopia/surgery , Postoperative Period , Rabbits , Refraction, Ocular , Riboflavin/therapeutic use , Rose Bengal , Surgical Flaps , Ultraviolet Rays
11.
J Biomed Opt ; 22(9): 1-7, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28933070

ABSTRACT

Keratoconus is an eye disease in which the cornea progressively deforms due to loss of cornea mechanical rigidity, and thus causes deterioration of visual acuity. Techniques to characterize the mechanical characteristics of the cornea are important to better monitor changes and response to treatments. To investigate the feasibility of using the endogenous fluorescence of cornea for monitoring alterations of its mechanical rigidity, linear tensiometry was used to quantitate stiffness and Young's modulus (YM) after treatments that increase cornea stiffness (collagen photocross-linking) or decrease stiffness (enzymatic digestion). The endogenous ultraviolet fluorescence of cornea was also measured before and after these treatments. The fluorescence excitation/emission spectral ranges were 280 to 430/390 to 520 nm, respectively. A correlation analysis was carried out to identify fluorescence excitation/emission pairs whose intensity changes correlated with the stiffness. A positive correlation was found between variations in fluorescence intensity of the 415-/485-nm excitation/emission pair and YM of photocross-linked corneas. After treatment of corneas with pepsin, the YM decreased as the fluorescence intensity at 290-/390-nm wavelengths decreased. For weakening of corneas with collagenase, only qualitative changes in the fluorescence spectrum were observed. Changes in the concentration of native or newly created fluorescent molecular species contain information that may be directly or indirectly related to the mechanical structure of the cornea.


Subject(s)
Cornea/diagnostic imaging , Tomography, Optical/methods , Animals , Collagen , Cornea/physiopathology , Feasibility Studies , Fluorescence , Keratoconus/diagnostic imaging , Rabbits , Ultraviolet Rays
12.
Invest Ophthalmol Vis Sci ; 58(9): 3471-3480, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28700779

ABSTRACT

Purpose: To evaluate corneal wound healing after treatment with a new collagen crosslinking protocol using rose bengal dye and green light (RGX). Methods: One cornea of 20 New Zealand rabbits was de-epithelialized (DE) in an 8-mm diameter circle and, in another group (n = 25), the DE corneas were then stained with 0.1% rose bengal for 2 minutes and exposed to green light (532 nm) for 7 minutes (RGX). The contralateral eyes without treatment acted as controls. The animals were clinically followed including fluorescein staining and pachymetry. Healing events were analyzed after euthanasia at 2, 30, and 60 days. Cell death (TUNEL assay), cell proliferation (5-bromo-2'-deoxyuridine incorporation), and cell differentiation to myofibroblasts (α-SMA labeling) were carried out. In addition, loss of keratocytes and subsequent repopulation of the corneal stroma were quantified on hematoxylin-eosin-stained sections. Results: Wound closure was slower after RGX (4.4 days) then after DE (3.3 days). Cell death was restricted to the anterior central stroma, and the cellular decrease did not differ significantly between RGX and DE corneas. Cell proliferation in the epithelium and stroma appeared at 2 days. In both DE and RGX corneas, recovery of the epithelium was complete at day 30, although cell repopulation of the stroma was not complete at 60 days. Conclusions: The healing response in corneas after RGX is very similar to that observed after DE alone, suggesting that, along with its short treatment time and limited effect on keratocytes, RGX displays good potential for clinical cornea stiffening.


Subject(s)
Collagen/pharmacology , Cornea/pathology , Corneal Injuries/drug therapy , Cross-Linking Reagents/pharmacology , Light , Rose Bengal/pharmacology , Wound Healing/drug effects , Animals , Cornea/drug effects , Disease Models, Animal , Female , Fluorescent Dyes/pharmacology , Rabbits
13.
Invest Ophthalmol Vis Sci ; 58(5): 2596-2602, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28494493

ABSTRACT

Purpose: Scleral cross-linking (SXL) with a photosensitizer and light is a potential strategy to mechanically reinforce the sclera and prevent progressive axial elongation responsible for severe myopia. Current approaches for light delivery to the sclera are cumbersome, do not provide uniform illumination, and only treat a limited area of sclera. To overcome these challenges, we developed flexible optical waveguides optimized for efficient, homogeneous light delivery. Methods: Waveguides were fabricated from polydimethylsiloxane elastomer. Blue light (445 nm) is coupled into the waveguide with an input fiber. Light delivery efficiency from the waveguide to scleral tissue was measured and fit to a theoretical model. SXL was performed on fresh porcine eyes stained with 0.5% riboflavin, using irradiances of 0, 25, and 50 mW/cm2 around the entire equator of the eye. Stiffness of scleral strips was characterized with tensiometry. Results: Light delivery with a waveguide of tapered thickness (1.4-0.5 mm) enhanced the uniformity of light delivery, compared to a flat waveguide, achieving a coefficient of variation of less than 10%. At 8% strain, sclera cross-linked with the waveguides at 50 mW/cm2 for 30 minutes had a Young's modulus of 10.7 ± 1.0 MPa, compared to 5.9 ± 0.5 MPa for no irradiation, with no difference in stiffness between proximally and distally treated halves. The stiffness of waveguide-irradiated samples did not differ from direct irradiation at the same irradiance. Conclusions: We developed flexible waveguides for periscleral cross-linking. We demonstrated efficient and uniform stiffening of a 5-mm-wide equatorial band of scleral tissue.


Subject(s)
Collagen/pharmacology , Cornea/physiopathology , Cross-Linking Reagents/pharmacology , Myopia/drug therapy , Photochemotherapy/methods , Animals , Cornea/drug effects , Disease Models, Animal , Elastic Modulus , Myopia/physiopathology , Sclera , Swine , Ultraviolet Rays
14.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S43-S49, 2017 07.
Article in English | MEDLINE | ID: mdl-28383474

ABSTRACT

BACKGROUND: Photochemical tissue bonding (PTB) is a sutureless, light-activated technique that produces a watertight, microvascular repair with minimal inflammation compared to standard microsurgery. However, it is practically limited by the need for a clinically viable luminal support system. The aim of this study was to evaluate a hollow biocompatible stent to provide adequate luminal support to facilitate vascular anastomosis using the PTB technique. METHODS: Forty rats underwent unilateral femoral artery transection. Five rats were used to optimize the stent delivery method, and the remaining 35 rats were randomized into three groups: (1) standard suture repair with 10-0 nylon microsuture (SR), (2) standard suture repair over the stent (SR + S), or (3) PTB repair over stent (PTB + S). For the PTB group, a 2-mm overlapping cuff was painted with 0.1% (wt/vol) Rose Bengal then illuminated for 30 seconds on each side (532 nm, 0.5 W/cm, 30 J/cm). Anastomotic leak and vessel patency (immediate, 1 hour, and 1 week postoperatively) were assessed. RESULTS: Vessels in all three groups were patent immediately and at 1 hour postoperatively. After 1 week, all animals displayed patency in the SR group, while only 5 of 14 and 2 of 8 surviving animals had patent vessels in the PTB + S and SR + S groups, respectively. CONCLUSIONS: This study demonstrated successful use of an intraluminal stent for acute microvascular anastomosis using the PTB technique. However, the longer-term presence of the stent at the anastomotic site led to thrombosis in multiple cases. A rapidly dissolvable stent should facilitate a light-activated microvascular anastomosis with excellent long-term patency.


Subject(s)
Anastomosis, Surgical/methods , Femoral Artery/surgery , Laser Therapy/methods , Stents , Anastomotic Leak/diagnosis , Animals , Biocompatible Materials , Disease Models, Animal , Male , Microscopy, Confocal , Microsurgery/methods , Photochemistry , Random Allocation , Rats , Rats, Sprague-Dawley , Suture Techniques , Vascular Patency
15.
Invest Ophthalmol Vis Sci ; 58(3): 1612-1620, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28297026

ABSTRACT

Purpose: To compare corneal biomechanical properties after in vivo and ex vivo cross-linking (CXL) using rose bengal-green light (RGX) or riboflavin-UVA (UVX). Methods: Corneas of 30 rabbits were treated in vivo by the two CXL modalities monolaterally (Group 1) or bilaterally (Group 2). Rabbits in Group 1 were euthanized 1 month after treatments and in Group 2 two months after treatment. Ex vivo CXL was also performed. Eyes were measured by Scheimpflug air puff corneal deformation imaging (Corvis ST) under constant IOP. Corneal deformation parameters were assessed. Inherent corneal biomechanical properties were estimated using inverse finite element modeling. Results: Peak to peak distance decreased 16% 2 months after RGX, and 4% and 20% 1 and 2 months after UVX, respectively. The equivalent Young's modulus (Eeq) increased relative to the control during the post treatment period for both RGX and UVX. The Eeq increased by factors of 3.4 (RGX) and 1.7 (UVX) 1 month and by factors of 10.7 (RGX) and 7.3 (UVX) 2 months after treatment. However, the Eeq values for ex vivo CXL were much greater than produced in vivo. The ex vivo Eeq was greater than the 1-month in vivo values by factors of 8.1 (RGX) and 9.1 (UVX) and compared with 2 month by factors of 2.5 (RGX) and 2.1 (UVX). Conclusions: These results indicate that corneal stiffness increases after CXL, and further increases as a function of time after both RGX and UVX. Also, while biomechanical properties determined after ex vivo CXL are indicative of corneal stiffening, they may not provide entirely accurate information about the responses to CXL in vivo.


Subject(s)
Collagen/pharmacology , Corneal Diseases/drug therapy , Corneal Stroma/physiopathology , Cross-Linking Reagents/pharmacology , Riboflavin/pharmacology , Rose Bengal/pharmacology , Ultraviolet Rays , Animals , Corneal Diseases/pathology , Corneal Diseases/physiopathology , Corneal Stroma/drug effects , Corneal Stroma/pathology , Disease Models, Animal , Elasticity , Fluorescent Dyes/pharmacology , Photosensitizing Agents/pharmacology , Rabbits
16.
Invest Ophthalmol Vis Sci ; 58(1): 586-593, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28129422

ABSTRACT

Purpose: To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. Methods: We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Results: Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Conclusions: Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.


Subject(s)
Cornea/microbiology , Eye Infections, Bacterial/therapy , Keratitis/therapy , Phototherapy/methods , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/isolation & purification , Animals , Colony Count, Microbial , Cornea/pathology , Disease Models, Animal , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/microbiology , Female , Follow-Up Studies , Keratitis/diagnosis , Keratitis/microbiology , Mice , Mice, Inbred C57BL , Pseudomonas Infections/diagnosis , Pseudomonas Infections/microbiology , Rabbits
17.
ACS Omega ; 2(10): 6646-6657, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457260

ABSTRACT

We investigated two critical aspects of rose Bengal (RB) photosensitized protein cross-linking that may underlie recently developed medical applications. Our studies focused on the binding of RB to collagen by physical interaction and the effect of this binding and certain amino acids on RB photochemistry. Molecular dynamics simulations and free-energy calculation techniques, complemented with isothermal titration calorimetry, provided insight into the binding between RB and a collagen-like peptide (CLP) at the atomic level. Electrostatic interactions dominated, which is consistent with the finding that RB bound equally well to triple helical and single chain collagen. The binding free energy ranged from -5.7 to -3 kcal/mol and was strongest near the positively charged amino groups at the N-terminus and on lysine side chains. At high RB concentration, a maximum of 16 ± 3 bound dye molecules per peptide was found, which is consistent with spectroscopic evidence for aggregated RB bound to collagen or the CLP. Within a tissue-mimetic collagen matrix, RB photobleached rapidly, probably due to electron transfer to certain protein amino acids, as was demonstrated in solutions of free RB and arginine. In the presence of arginine and low oxygen concentrations, a product absorbing at 510 nm formed, presumably due to dehalogenation after electron transfer to RB. In the collagen matrix without arginine, the dye generated singlet oxygen as well as the 510 nm product. These results provide the first evidence of the effects of a tissue-like environment on the photochemical mechanisms of rose Bengal.

18.
Cornea ; 35(9): 1234-41, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27362877

ABSTRACT

PURPOSE: To evaluate crosslinking of cornea in vivo using green light activation of Rose Bengal (RGX) and assess potential damaging effects of the green light on retina and iris. METHODS: Corneas of Dutch belted rabbits were de-epithelialized, then stained with Rose Bengal and exposed to green light, or not further treated. Corneal stiffness was measured by uniaxial tensiometry. Re-epithelialization was assessed by fluorescein fluorescence. Keratocytes were counted on hematoxylin and eosin (H&E)-stained sections, and iris cell damage was assessed by lactate dehydrogenase staining. Thermal effects on the blood-retinal barrier (BRB) were assessed by fluorescein angiography and those on photoreceptors, retinal pigment epithelium (RPE), and choriocapillaris by light microscopy and transmission electron microscopy. RESULTS: RGX (10-min irradiation; 150 J/cm) increased corneal stiffness 1.9-fold on day 1 (1.25 ± 0.21 vs. 2.38 ± 0.59 N/mm; P = 0.036) and 2.8-fold compared with controls on day 28 (1.70 ± 0.74 vs. 4.95 ± 1.86 N/mm; P = 0.003). Keratocytes decreased only in the anterior stroma on day 1 (24.0 ± 3.0 vs. 3.67 ± 4.73, P = 0.003) and recovered by day 28 (37.7 ± 8.9 vs. 34.5 ± 2.4, P = 0.51). Iris cells were not thermally damaged. No evidence of BRB breakdown was detected on days 1 or 28. Retina from RGX-treated eyes seemed normal with RPE cells showing intact nuclei shielded apically by melanosomes, morphologically intact photoreceptor outer segments, normal outer nuclear layer thickness, and choriocapillaris containing intact erythrocytes. CONCLUSIONS: The substantial corneal stiffening produced by RGX together with the lack of significant effects on keratocytes and no evidence for retina or iris damage suggest that RGX-initiated corneal crosslinking may be a safe, rapid, and effective treatment.


Subject(s)
Corneal Stroma/drug effects , Cross-Linking Reagents , Lasers, Solid-State , Photochemotherapy , Photosensitizing Agents/pharmacology , Rose Bengal/pharmacology , Animals , Blood-Retinal Barrier/radiation effects , Cell Count , Collagen/metabolism , Corneal Keratocytes/pathology , Corneal Stroma/metabolism , Fluorescein Angiography , Iris/radiation effects , Male , Microscopy, Electron, Transmission , Rabbits , Re-Epithelialization
20.
Invest Ophthalmol Vis Sci ; 57(4): 2319-27, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27127932

ABSTRACT

PURPOSE: To examine whether Nrf2-regulated antioxidant defense and p53 are activated in human corneal endothelial cells (CEnCs) by environmental levels of ultraviolet A (UV-A), a known stimulator of oxidative stress. METHODS: Immortalized human CEnCs (HCEnCi) were exposed to UV-A fluences of 2.5, 5, 10, or 25 J/cm2, then allowed to recover for 3 to 24 hours. Control HCEnCi did not receive UV-A. Reactive oxygen species (ROS) were measured using H2DCFDA. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. Levels of Nrf2, HO-1, NQO-1, p53, and caspase3 were detected by immunnoblotting or real-time PCR. Activated caspase3 was measured by immunoblotting and a fluorescence assay. RESULTS: Exposure of HCEnCi to 5, 10, and 25 J/cm2 UV-A increased ROS levels compared with controls. Nrf2, HO-1, and NQO-1 mRNA increased 1.7- to 3.2-fold at 3 and 6 hours after irradiation with 2.5 and 5 J/cm2 UV-A. At 6 hours post irradiation, UV-A (5 J/cm2) enhanced nuclear Nrf2 translocation. At 24 hours post treatment, UV-A (5, 10, and 25 J/cm2) produced a 1.8- to 2.8-fold increase in phospho-p53 and a 2.6- to 6.0-fold increase in activated caspase3 compared with controls, resulting in 20% to 42% cell death. CONCLUSIONS: Lower fluences of UV-A induce Nrf2-regulated antioxidant defense and higher fluences activate p53 and caspase3, indicating that even near-environmental levels of UV-A may affect normal CEnCs. This data suggest that UV-A may especially damage cells deficient in antioxidant defense, and thus may be involved in the etiology of Fuchs' endothelial corneal dystrophy (FECD).


Subject(s)
Apoptosis/radiation effects , Caspase 3/physiology , Endothelium, Corneal/radiation effects , NF-E2-Related Factor 2/physiology , Tumor Suppressor Protein p53/physiology , Ultraviolet Rays/adverse effects , Apoptosis/physiology , Blotting, Western , Cell Line , Dose-Response Relationship, Radiation , Endothelium, Corneal/metabolism , Endothelium, Corneal/physiology , Humans , Immunoblotting , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...