Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 23059, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26972114

ABSTRACT

Mechanochemistry, i.e. the application of forces, F, at the molecular level, has attracted significant interest as a means of controlling chemical reactions. The present study uses quantum chemical calculations to explore the abilities to mechanically eliminate activation energies, ΔE(‡), for unimolecular and bimolecular reactions. The results demonstrate that ΔE(‡) can be eliminated for unimolecular reactions by applying sufficiently large F along directions that move the reactant and/or transition state (TS) structures parallel to the zero-F reaction coordinate, S0. In contrast, eliminating ΔE(‡) for bimolecular reactions requires the reactant to undergo a force-induced shift parallel to S0 irrespective of changes in the TS. Meeting this requirement depends upon the coupling between F and S0 in the reactant. The insights regarding the differences in eliminating ΔE(‡) for unimolecular and bimolecular reactions, and the requirements for eliminating ΔE(‡), may be useful in practical efforts to control reactions mechanochemically.

2.
Top Curr Chem ; 369: 37-96, 2015.
Article in English | MEDLINE | ID: mdl-26233311

ABSTRACT

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

3.
Dalton Trans ; 42(6): 2282-93, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23202279

ABSTRACT

The synthesis, structure determination and oxidative stability of novel Rh-NHC complexes which feature pyridine-derived ligands have been described. All complexes described herein were synthesized from common dinuclear precursors of general structure [Rh(NHC)(L)Cl](2), where L is a monodentate olefin. We demonstrate that the use of these precursors is critical for the formation of all complexes since related cyclooctadiene containing precursors ([Rh(NHC)(COD)Cl]) were completely unreactive under identical conditions. We further demonstrate that complexes with the general formula [Rh(NHC)(olefin)(Py)Cl] or ([Rh(NHC)(BiPy/Phen)Cl]) are extremely sensitive to oxygen, reacting initially to give an adduct with dioxygen, and then decomposing further. The series of compounds and their oxidation products gave a remarkable range of colours which may be useful in the preparation of colourometric oxygen sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...