Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS Open ; 7(1): 6, 2021.
Article in English | MEDLINE | ID: mdl-34869830

ABSTRACT

The Stability Community of the American Association of Pharmaceutical Scientists (AAPS) held a virtual workshop on "Vaccine Stability Considerations to Enable Rapid Development and Deployment", on March 24-25, 2021. The workshop included distinguished speakers and panelists from across the industry, academia, regulatory agencies, as well as health care leaders. This paper presents a review of the topics covered. Specifically the challenges in accelerating vaccine development and analytical characterization techniques to establish shelf-life were covered. Additionally, vaccine stability modeling using prior knowledge stability models and advanced kinetic analysis played a key in the EUA approaches discussed during the workshop. Finally, the role of stability studies in addressing the challenges of vaccine distribution and deployment during the pandemic were a focus of presentations and panel discussions. Although the workshop did not have any presentation topics directly dedicated to the mRNA vaccines, the techniques discussed are generally applicable. The mRNA vaccine developers were represented in the panel discussions, where experts involved in the EUA approval/deployment stages for this vaccine type could discuss the challenges as applied to their vaccines.

2.
J Pharm Biomed Anal ; 125: 130-9, 2016 Jun 05.
Article in English | MEDLINE | ID: mdl-27017571

ABSTRACT

A platform analytical quality by design approach for methods development is presented in this paper. This approach is not limited just to method development following the same logical Analytical quality by design (AQbD) process, it is also exploited across a range of applications in methods development with commonality in equipment and procedures. As demonstrated by the development process of 3 methods, the systematic approach strategy offers a thorough understanding of the method scientific strength. The knowledge gained from the UHPLC-UV peptide mapping method can be easily transferred to the UHPLC-MS oxidation method and the UHPLC-UV C-terminal heterogeneity methods of the same protein. In addition, the platform AQbD method development strategy ensures method robustness is built in during development. In early phases, a good method can generate reliable data for product development allowing confident decision making. Methods generated following the AQbD approach have great potential for avoiding extensive post-approval analytical method change. While in the commercial phase, high quality data ensures timely data release, reduced regulatory risk, and lowered lab operational cost. Moreover, large, reliable database and knowledge gained during AQbD method development provide strong justifications during regulatory filling for the selection of important parameters or parameter change needs for method validation, and help to justify for removal of unnecessary tests used for product specifications.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Proteins/analysis , Spectrophotometry, Ultraviolet/methods , Peptide Mapping
3.
J Pharm Biomed Anal ; 43(5): 1638-46, 2007 Apr 11.
Article in English | MEDLINE | ID: mdl-17224256

ABSTRACT

VX-497 is a poorly water-soluble compound. It is formulated in PEG-400 and encapsulated in softgel capsules. Although the drug product is stable at refrigerated conditions, many degradation peaks have been observed at accelerated storage conditions. An investigation utilizing high performance liquid chromatography-mass spectrometry (HPLC-MS) was conducted to understand the degradation mechanism of the active pharmaceutical ingredient (VX-497) in PEG-400 formulation. Results revealed that the degradation was mainly caused by the reaction between VX-497 with moisture (hydrolysis) and PEG-400 (PEGylation). The numerous degradation peaks observed in the samples stored at accelerated conditions were PEG adducts covalently attached to portions of the VX-497 molecule, which were confirmed by comparison with synthetic markers. Investigation also found that an impurity, which was present in the VX-497 drug substance, reacted with PEG-400 following the same reaction mechanism, and generated additional impurities in the VX-497 drug product. By changing the process for drug substance synthesis, pure batches of VX-497 were obtained. Furthermore, it was found that the reaction between VX-497 and PEG-400 was temperature and time dependent. When the drug product was manufactured at 45 degrees C and the processing time was controlled, the PEG degradants and by-products were reduced to non-detectable levels, resulting in greatly improved drug product quality. This paper presents an integrated effort among analytical, process, and formulation scientists on how to develop a better drug product by understanding the fundamental issues of the drug product, namely the degradation mechanism.


Subject(s)
Carbamates/metabolism , Pharmaceutical Preparations/metabolism , Phenylurea Compounds/metabolism , Polyethylene Glycols/chemistry , Water/chemistry , Capsules , Carbamates/analysis , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/isolation & purification , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Drug Contamination , Hydrolysis , Mass Spectrometry , Molecular Structure , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Phenylurea Compounds/analysis , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/chemistry , Phenylurea Compounds/isolation & purification , Solubility , Solutions/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...