Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276456

ABSTRACT

This study presents research results concerning the vacuum carburizing of four steel grades, specifically conforming to European standards 1.7243, 1.6587, 1.5920, and 1.3532. The experimental specimens exhibited variations primarily in nickel content, ranging from 0 to approximately 3.8 wt. %. As a comparative reference, gas carburizing was also conducted on the 1.3532 grade, which had the highest nickel content. Comprehensive structural analysis was carried out on the resultant carburized layers using a variety of techniques, such as optical and electron scanning, transmission microscopy, and X-ray diffraction. Additionally, mechanical properties such as hardness and fatigue strength were assessed. Fatigue strength evaluation was performed on un-notched samples having a circular cross-section with a diameter of 12 mm. Testing was executed via a three-point bending setup subjected to sinusoidally varying stresses ranging from 0 to maximum stress levels. The carburized layers produced had effective thicknesses from approximately 0.8 to 1.4 mm, surface hardness levels in the range of 600 to 700 HV, and estimated retained austenite contents from 10 to 20 vol%. The observed fatigue strength values for the layers varied within the range from 1000 to 1350 MPa. It was found that changing the processing method from gas carburizing, which induced internal oxidation phenomena, to vacuum carburizing improved the fatigue properties to a greater extent than increasing the nickel content of the steel.

2.
Polymers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080519

ABSTRACT

Cross-linked polyethylene (XLPE) is one of the most popular insulation materials used in the production of medium and high voltage cables (MV, HV). This article presents the results of research carried out on two types of commercially used insulation materials, modified with the addition of organophilic phyllosilicate (CLOISITE C20A)and halloysite nanotubes (HNTs). The influence of fillers on the mechanical properties of insulating materials is discussed as a potential mechanism for increasing their resistance to the phenomenon of water-tree. SEM and XRD analyses were performed to investigate the morphology and DSC for comparing phase transitions. Mechanical and functional properties for different concentrations of nanofillers, such as their hybrids, were also investigated.

3.
Materials (Basel) ; 14(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832342

ABSTRACT

New slurry cementation method was used to produce silicide and silicide-aluminide protective coatings on molybdenum alloy (TZM). The slurry cementation processes were carried out at a temperature of 1000 °C in different time intervals with the use of varied slurry mass values. The microstructure and thickness of the coatings were studied by means of scanning microscopy. Chemical composition using X-ray microanalysis and phase composition using X-ray diffraction were also investigated. Coating microhardness was determined. The obtained coatings had a multilayer structure. Phases from the Al-Si-Mo system were observed in silicide-aluminide coatings and phases from the Si-Mo system were observed in silicide coatings. The microhardness strongly depended on the phase composition of the coating. It was demonstrated that slurry mass values had an important influence on the morphology and growth kinetics of silicide-aluminide coatings. In the case of a small amount of the slurry, the deficiency of alloying elements occurring during long processes reduces growth kinetics and can lead to void formation in the structure of silicide-aluminide coatings.

4.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810454

ABSTRACT

There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.

5.
Materials (Basel) ; 14(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918460

ABSTRACT

Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.

6.
Materials (Basel) ; 15(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009308

ABSTRACT

A new slurry cementation method was used to produce silicide-aluminide protective coatings on austenitic stainless steel 1.4541. The slurry cementation processes were carried out at temperatures of 800 and 1000 °C for 2 h with and without an additional oxidation process at a temperature of 1000 °C for 5 min. The microstructure and thickness of the coatings were studied by scanning electron microscopy (SEM). The intention was to produce coatings that would increase the heat resistance of the steel in a nitriding atmosphere. For this reason, the produced coatings were subjected to gas nitriding at a temperature of 550-570 °C in an atmosphere containing from 40 to 60% of ammonia. The nitriding was carried out using four time steps: 16, 51, 124, and 200 h, and microstructural observations using SEM were performed after each step. Analysis of the chemical composition of the aluminide coatings and reference sample was performed using wavelength (WDS) and energy (EDS) dispersive X-ray microanalysis, and phase analysis was carried out using X-ray diffraction (XRD). The resistance of the aluminide coatings in the nitriding atmosphere was found to depend strongly on the phase composition of the coating. The greatest increase in resistance to gas corrosion under nitriding atmosphere conditions was achieved using a manufacturing temperature of 1000 °C.

7.
Materials (Basel) ; 13(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872301

ABSTRACT

The influence of carbon multi-walled nanotubes (MWCNTs) and halloysite nanotubes (HNTs) on the physical, thermal, mechanical, and electrical properties of EVA (ethylene vinyl acetate) copolymer was investigated. EVA-based nanocomposites containing MWCNTs or HNTs, as well as hybrid nanocomposites containing both nanofillers were prepared by melt blending. Scanning electron microcopy (SEM) images revealed the presence of good dispersion of both kinds of nanotubes throughout the EVA matrix. The incorporation of nanotubes into the EVA copolymer matrix did not significantly affect the crystallization behavior of the polymer. The tensile strength of EVA-based nanocomposites increased along with the increasing CNTs (carbon nanotubes) content (increased up to approximately 40% at the loading of 8 wt.%). In turn, HNTs increased to a great extent the strain at break. Mechanical cyclic tensile tests demonstrated that nanocomposites with hybrid reinforcement exhibit interesting strengthening behavior. The synergistic effect of hybrid nanofillers on the modulus at 100% and 200% elongation was visible. Moreover, along with the increase of MWCNTs content in EVA/CNTs nanocomposites, an enhancement in electrical conductivity was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...