Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(3): 106175, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36788793

ABSTRACT

Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

2.
bioRxiv ; 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35132420

ABSTRACT

Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

3.
Sci Rep ; 9(1): 18940, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831779

ABSTRACT

Cancer is a genetic disease that results from accumulation of unfavorable mutations. As soon as genetic and epigenetic modifications associated with these mutations become strong enough, the uncontrolled tumor cell growth is initiated, eventually spreading through healthy tissues. Clarifying the dynamics of cancer initiation is thus critically important for understanding the molecular mechanisms of tumorigenesis. Here we present a new theoretical method to evaluate the dynamic processes associated with the cancer initiation. It is based on a discrete-state stochastic description of the formation of tumors as a fixation of cancerous mutations in tissues. Using a first-passage analysis the probabilities for the cancer to appear and the times before it happens, which are viewed as fixation probabilities and fixation times, respectively, are explicitly calculated. It is predicted that the slowest cancer initiation dynamics is observed for neutral mutations, while it is fast for both advantageous and, surprisingly, disadvantageous mutations. The method is applied for estimating the cancer initiation times from experimentally available lifetime cancer risks for different types of cancer. It is found that the higher probability of the cancer to occur does not necessary lead to the faster times of starting the cancer. Our theoretical analysis helps to clarify microscopic aspects of cancer initiation processes.


Subject(s)
Cell Transformation, Neoplastic , Models, Biological , Mutation , Neoplasms , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Stochastic Processes
4.
Molecules ; 23(9)2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30131459

ABSTRACT

Protein-DNA interactions are critical for the successful functioning of all natural systems. The key role in these interactions is played by processes of protein search for specific sites on DNA. Although it has been studied for many years, only recently microscopic aspects of these processes became more clear. In this work, we present a review on current theoretical understanding of the molecular mechanisms of the protein target search. A comprehensive discrete-state stochastic method to explain the dynamics of the protein search phenomena is introduced and explained. Our theoretical approach utilizes a first-passage analysis and it takes into account the most relevant physical-chemical processes. It is able to describe many fascinating features of the protein search, including unusually high effective association rates, high selectivity and specificity, and the robustness in the presence of crowders and sequence heterogeneity.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Models, Theoretical , Algorithms , Base Sequence , DNA/metabolism , DNA-Binding Proteins/metabolism , Protein Binding , Stochastic Processes
5.
J Phys Chem Lett ; 8(17): 4049-4054, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28796515

ABSTRACT

The starting point of many fundamental biological processes is associated with protein molecules finding and recognizing specific sites on DNA. However, despite a large number of experimental and theoretical studies on protein search for targets on DNA, many molecular aspects of underlying mechanisms are still not well understood. Experiments show that proteins bound to DNA can switch between slow recognition and fast search conformations. However, from a theoretical point of view, such conformational transitions should slow down the protein search for specific sites on DNA, in contrast to available experimental observations. In addition, experiments indicate that the nucleotide composition near the target site is more symmetrically homogeneous, leading to stronger effective interactions between proteins and DNA at these locations. However, as has been shown theoretically, this should also make the search less efficient, which is not observed. We propose a possible resolution of these problems by suggesting that conformational transitions occur only within a segment around the target where stronger interactions between proteins and DNA are observed. Two theoretical methods, based on continuum and discrete-state stochastic calculations, are developed, allowing us to obtain a comprehensive dynamic description for the protein search process in this system. The existence of an optimal length of the conformational transition zone with the shortest mean search time is predicted.


Subject(s)
DNA/metabolism , Protein Binding/physiology , Protein Conformation , Models, Molecular , Proteins/metabolism
6.
Biophys J ; 112(5): 859-867, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28297645

ABSTRACT

Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.


Subject(s)
DNA/genetics , DNA/metabolism , Models, Biological , Rec A Recombinases/metabolism , Sequence Homology, Nucleic Acid , DNA/chemistry , Monte Carlo Method , Nucleic Acid Conformation
7.
Biomed Res Int ; 2015: 120802, 2015.
Article in English | MEDLINE | ID: mdl-26484350

ABSTRACT

In consequence of the key role of factor Xa in the clotting cascade and absence of its activity in the processes that do not affect coagulation, this protein is an attractive target for development of new blood coagulation inhibitors. Factor Xa is more effective and convenient target for creation of anticoagulants than thrombin, inhibition of which may cause some side effects. This study is aimed at finding new inhibitors of factor Xa by molecular computer modeling including docking SOL and postdocking optimization DISCORE programs. After validation of molecular modeling methods on well-known factor Xa inhibitors the virtual screening of NCI Diversity and Voronezh State University databases of ready-made low molecular weight species has been carried out. Seventeen compounds selected on the basis of modeling results have been tested experimentally in vitro. It has been found that 12 of them showed activity against factor Xa (IC50 = 1.8-40 µM). Based on analysis of the results, the new original compound was synthesized and experimentally verified. It shows activity against factor Xa with IC50 value of 0.7 µM.


Subject(s)
Drug Discovery/methods , Factor Xa Inhibitors , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...