Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 203: 44-51, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31000482

ABSTRACT

We report on a novel way of performing stimulated electron energy-loss and energy-gain spectroscopy (sEELS/sEEGS) experiments that does not require a pulsed gun. In this scheme, a regular scanning transmission electron microscope (STEM) equipped with a conventional continuous electron gun is fitted with a modified EELS detector and a light injector in the object chamber. The modification of the EELS detector allows one to expose the EELS camera during tunable time intervals that can be synchronized with nanosecond laser pulses hitting the sample, therefore allowing us to collect only those electrons that have interacted with the sample under light irradiation. Using  ∼ 5 ns laser pulses of  ∼ 2 eV photon energy on various plasmonic silver samples, we obtain evidence of sEELS/sEEGS through the emergence of up to two loss and gain peaks in the spectra at  ±â€¯2 and  ±â€¯4 eV. Because this approach does not involve any modification of the gun, our method retains the original performances of the microscope in terms of energy resolution and spectral imaging with and without light injection. Compared to pulsed-gun techniques, our method is mainly limited to a perturbative regime (typically no more that one gain event per incident electron), which allows us to observe resonant effects, in particular when the plasmon energy of a silver nanostructure matches the laser photon energy. In this situation, EELS and EEGS signals are enhanced in proportion to n+1 and n, respectively, where n is the average plasmon population due to the external illumination. The n term is associated with stimulated loss and gain processes, and the term of 1 corresponds to conventional (spontaneous) loss. The EELS part of the spectrum is therefore an incoherent superposition of spontaneous and stimulated EEL events. This is confirmed by a proper quantum-mechanical description of the electron/light/plasmon system incorporating light-plasmon and plasmon-electron interactions, as well as inelastic plasmon decay.

2.
Ultramicroscopy ; 186: 128-138, 2018 03.
Article in English | MEDLINE | ID: mdl-29306810

ABSTRACT

We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses.

3.
Ultramicroscopy ; 180: 81-92, 2017 09.
Article in English | MEDLINE | ID: mdl-28377215

ABSTRACT

The new generation of spectromicroscopes opens up new fields of nanophysics. Beyond the impressive spatial and spectral resolutions delivered by these new instruments - an obvious example being the Hermes machine conceived, designed and built by O. L. Krivanek, who is honoured in this journal issue - here we wish to address the motivations and conditions required to get the best out of them. We first coarsely sketch the panorama of physical excitations worth motivating the use of ultra-high resolution spectroscopy techniques in STEMs. We then give general considerations on the use of combined spectroscopy techniques, reciprocal space measurements and additional time-resolved experiments to complement the wealth of the physical insights provided by the new-generation spectromicroscopes. We then comment on the newly enhanced mechanical and high voltage stabilities and their effects on the accuracy of spectroscopic measurements. The use of temperature-dependent experiments, to bring electron spectroscopy techniques to the standard of other condensed matter physics techniques such as optical and X-ray spectroscopy, is also described. We finish by evaluating the impact of other breakthrough developments, such as energy gain electron spectroscopy or electron-phase manipulation, on the use of ultra-high resolution spectromicroscopes.

4.
Ultramicroscopy ; 176: 112-131, 2017 05.
Article in English | MEDLINE | ID: mdl-28341557

ABSTRACT

Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications.

5.
Ultramicroscopy ; 174: 50-69, 2017 03.
Article in English | MEDLINE | ID: mdl-28040579

ABSTRACT

Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications.

6.
Phys Rev Lett ; 114(19): 197401, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024196

ABSTRACT

We have measured the second order correlation function [g^{(2)}(τ)] of the cathodoluminescence intensity resulting from the excitation by fast electrons of defect centers in wide band-gap semiconductor nanocrystals of diamond and hexagonal boron nitride. We show that the cathodoluminescence second order correlation function g^{(2)}(τ) of multiple defect centers is dominated by a large, nanosecond zero-delay bunching (g^{(2)}(0)>30), in stark contrast to their flat photoluminescence g^{(2)}(τ) function. We have developed a model showing that this bunching can be attributed to the synchronized emission from several defect centers excited by the same electron through the deexcitation of a bulk plasmon into few electron-hole pairs.

7.
J Phys Condens Matter ; 25(50): 505303, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24275309

ABSTRACT

We report the observation of light emission on wurtzite InP nanowires excited by fast electrons. The experiments were performed in a scanning transmission electron microscope using an in-house-built cathodoluminescence detector. Besides the exciton emission, at 850 nm, emission above the band gap from 400 to 800 nm was observed. In particular, this broad emission presented systematic periodic modulations indicating variations in the local excitation probability. The physical origin of the detected emission is not clear. Measurements of the spatial variation of the above-the-gap emission points to the formation of leaky cavity modes of a plasmonic nature along the nanowire length, indicating the wave nature of the excitation. We propose a phenomenological model, which fits closely the observed spatial variations.


Subject(s)
Electrodes , Electrons , Indium/chemistry , Luminescent Measurements/methods , Models, Theoretical , Nanowires/chemistry , Phosphines/chemistry
8.
Nanotechnology ; 24(30): 305703, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23818066

ABSTRACT

The optical properties of single AlGaN nanowires grown by plasma-assisted molecular beam epitaxy have been studied by nanocathodoluminescence. Optical emission was found to be position-dependent and to occur in a wide wavelength range, a feature which has been assigned to a composition gradient along the nanowire growth axis, superimposed on local composition fluctuations at the nanometer scale. This behavior is associated with the growth mode of such AlGaN nanowires, which is governed by kinetics, leading to the successive formation of (i) a zone with strong local composition fluctuations followed by (ii) a zone with a marked composition gradient and, eventually, (iii) a zone corresponding to a steady state regime and the formation of a homogeneous alloy.

9.
Phys Rev Lett ; 110(15): 153604, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167267

ABSTRACT

We report on the experimental demonstration of single-photon state generation and characterization in an electron microscope. In this aim we have used low intensity relativistic (energy between 60 and 100 keV) electrons beams focused in a ca. 1 nm probe to excite diamond nanoparticles. This triggered individual neutral nitrogen-vacancy centers to emit photons which could be gathered and sent to a Hanbury Brown-Twiss intensity interferometer. The detection of a dip in the correlation function at small time delays clearly demonstrates antibunching and thus the creation of nonclassical light states. Specifically, we have also demonstrated single-photon states detection. We unveil the mechanism behind quantum states generation in an electron microscope, and show that it clearly makes cathodoluminescence the nanometer scale analog of photoluminescence. By using an extremely small electron probe size and the ability to monitor its position with subnanometer resolution, we also show the possibility of measuring the quantum character of the emitted beam with deep subwavelength resolution.

10.
Nanotechnology ; 23(45): 455205, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23090422

ABSTRACT

The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a scanning transmission electron microscope (STEM) operating in spectrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized, with spatial extent as low as 5 nm, due to the high band gap difference between GaN and AlN. This allows the discrimination between the emission of neighbouring QDiscs and evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proved to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.

11.
Nanotechnology ; 23(17): 175702, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22481219

ABSTRACT

Here we report the spectrally and spatially resolved cathodoluminescence of diamond nanoparticles using focused fast electron beams in a transmission electron microscope. We demonstrate the possibility of quickly detecting various individual colour centres of different kinds on wide areas (several micrometres square) contained in nanoparticles separated by subwavelength distances. Among them, nanoparticles containing one or more neutral nitrogen-vacancy (NV(0)) intensity maxima have been seen, attributable to individual emitters. Thanks to a spatial resolution which is solely limited by charge carrier diffusion in the case of a fast electron (80 keV) setup, the spectra of two individual NV(0) emitters separated by 80 nm inside a nanoparticle have been spatially discerned. A shift of the zero phonon line (ZPL) between the two emitters, which we attribute to internal stress, is shown to arise even within the same nanoparticle. Detailed emission spectra (ZPL, phonon lines and Huang-Rhys factor, directly linked to the relaxation energy of the colour centre) in 51 individual NV(0) centres have been measured in 39 particles. The ZPL and Huang-Rhys factor are found to be measurably dispersed, while the phonon energies keep constant.

12.
Nanotechnology ; 23(13): 135703, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22418250

ABSTRACT

We demonstrate the strong influence of strain on the morphology and In content of InGaN insertions in GaN nanowires, in agreement with theoretical predictions which establish that InGaN island nucleation on GaN nanowires may be energetically favorable, depending on In content and nanowire diameter. EDX analyses reveal In inhomogeneities between the successive dots but also along the growth direction within each dot, which is attributed to compositional pulling. Nanometer-resolved cathodoluminescence on single nanowires allowed us to probe the luminescence of single dots, revealing enhanced luminescence from the high In content top part with respect to the lower In content dot base.

13.
Nano Lett ; 10(8): 2939-43, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20617803

ABSTRACT

We report the demonstration of single-nanowire photodetectors relying on carrier generation in GaN/AlN QDiscs. Two nanowire samples containing QDiscs of different thicknesses are analyzed and compared to a reference binary n-i-n GaN nanowire sample. The responsivity of a single wire QDisc detector is as high as 2 x 10(3) A/W at lambda = 300 nm at room temperature. We show that the insertion of an axial heterostructure drastically reduces the dark current with respect to the binary nanowires and enhances the photosensitivity factor (i.e., the ratio between the photocurrent and the dark current) up to 5 x 10(2) for an incoming light intensity of 5 mW/cm(2). Photocurrent spectroscopy allows identification of the spectral contribution related to carriers generated within large QDiscs, which lies below the GaN band gap due to the quantum confined Stark effect.

14.
Nano Lett ; 10(3): 902-7, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20163134

ABSTRACT

We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.


Subject(s)
Nanostructures/chemistry , Refractometry/instrumentation , Silver/chemistry , Surface Plasmon Resonance/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Models, Chemical
15.
Philos Trans A Math Phys Eng Sci ; 367(1903): 3845-58, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19687069

ABSTRACT

Developments in instrumentation are essential to open new fields of science. This clearly applies to electron microscopy, where recent progress in all hardware components and in digitally assisted data acquisition and processing has radically extended the domains of application. The demonstrated breakthroughs in electron optics, such as the successful design and practical realization and the use of correctors, filters and monochromators, and the permanent progress in detector efficiency have pushed forward the performance limits, in terms of spatial resolution in imaging, as well as for energy resolution in electron energy-loss spectroscopy (EELS) and for sensitivity to the identification of single atoms. As a consequence, the objects of the nanoworld, of natural or artificial origin, can now be explored at the ultimate atomic level. The improved energy resolution in EELS, which now encompasses the near-IR/visible/UV spectral domain, also broadens the range of available information, thus providing a powerful tool for the development of nanometre-level photonics. Furthermore, spherical aberration correctors offer an enlarged gap in the objective lens to accommodate nanolaboratory-type devices, while maintaining angström-level resolution for general characterization of the nano-object under study.

16.
Phys Rev Lett ; 101(19): 197403, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-19113310

ABSTRACT

We report on the first tunable resonant Raman scattering study performed on suspended isolated and coupled single-wall carbon nanotubes, unambiguously identified by electron diffraction. Besides the confirmation of the relation between the structural properties, the radial breathing frequency and the optical resonances for isolated metallic nanotubes, we evidence that interacting nanotubes experience drastic modifications of their resonance fingerprints. We first demonstrate a degeneracy lifting of an electronic level in a bundle of identical zigzag nanotubes. We then show the existence of a strong energy transfer mediated by a mechanical coupling between two nonidentical bundled nanotubes.

17.
Phys Rev Lett ; 100(10): 106804, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18352220

ABSTRACT

Electron energy loss spectroscopy performed in transmission electron microscopes is shown to directly render the photonic local density of states with unprecedented spatial resolution, currently below the nanometer. Two special cases are discussed in detail: (i) 2D photonic structures with the electrons moving along the translational axis of symmetry and (ii) quasiplanar plasmonic structures under normal incidence. Nanophotonics in general and plasmonics, in particular, should benefit from these results connecting the unmatched spatial resolution of electron energy loss spectroscopy with its ability to probe basic optical properties such as the photonic local density of states.

18.
Phys Rev Lett ; 100(3): 035301, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18232994

ABSTRACT

Spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has been used to investigate a He fluidic phase in nanobubbles embedded in a metallic Pd(90)Pt(10) matrix. Using the 1s-->2p excitation of the He atoms, maps of the He density and pressure in bubbles of different diameters have been realized, to provide an indication of the bubble formation mechanism. Detailed local variations of the He K-line characteristics have been measured and interpreted as modifications of the electromagnetic properties of the He atom close to a metallic interface, which affects a correct estimation of the densities within the smallest bubbles.

19.
Phys Rev Lett ; 95(12): 127601, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197110

ABSTRACT

Spatially resolved electron energy loss spectroscopy experiments have been performed in an electron microscope on several individual boron nitride (BN) single-, double-, and triple-walled nanotubes, whose diameters and number of shells have been carefully measured. In the low-loss region (from 2 to 50 eV) the spectra have been analyzed within the framework of the continuum dielectric theory, leading to the conclusion of a weak influence of out-of-plane contribution to the dielectric response of the tubes. The gap has been measured to be independent of the nanotubes geometry, and close to the in-plane gap value of hexagonal BN (5.8+/-0.2 eV).

20.
Phys Rev Lett ; 89(15): 155501, 2002 Oct 07.
Article in English | MEDLINE | ID: mdl-12365998

ABSTRACT

We performed in situ transport measurements in a transmission-electron microscope (TEM) on individual double-walled carbon nanotubes (DWNT). Using selected-area electron diffraction, the chiral indices of the two tubes constituting the DWNTs were determined through careful comparison with theory. We discuss the case of a DWNT whose two tubes have a gap at half filling and show a finite density of delocalized state at the Fermi level. The exact determination of chiral indices should be reachable in any transport-measurement experiment with samples that allow TEM characterization.

SELECTION OF CITATIONS
SEARCH DETAIL
...