Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(5): 2750-2757, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30933563

ABSTRACT

The planar heterocyclic molecules 1,6,7,12-tetraazaperylene on a Ag(111) metal substrate show different charging characteristics depending on their local environment: next to vacancies in self-assembled islands, molecules can be charged by local electric fields, whereas their charge state is fixed otherwise. This enables the activation of selected molecules inside islands by vacancy creation from scanning-probe-based manipulation. This concept allows for combining the precise mutual atomic-scale alignment of molecules by self-assembly, on one hand, and the implementation of specific functionality into otherwise homogeneous monolayers, on the other. Activated molecules in the direct neighborhood influence each other in their charging characteristics, suggesting their use as molecular quantum cellular automata. Surprisingly, only very few interacting molecules exhibit a rich spectroscopic signature, which offers the prospect of implementing complex functionality in such structures in the future.

2.
ACS Nano ; 13(2): 1385-1393, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30726665

ABSTRACT

The coordination-restricted ortho-site C-H bond activation and dehydrogenative homocoupling of 4,4'-(1,3-phenylene)dipyridine (1,3-BPyB) and 4,4'-(1,4-phenylene)dipyridine (1,4-BPyB) on different metal surfaces were studied by a combination of scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. The coupling products on Cu(111) exhibited certain configurations subject to the spatial restriction of robust two-fold Cu-N coordination bonds. Compared to the V-shaped 1,3-BPyB, the straight backbone of 1,4-BPyB helped to further reduce the variety of reactive products. By utilizing the three-fold coordination of Fe atoms with 1,4-BPyB molecules on Au(111), a large-scale network containing single products was constructed. Our results offer a promising protocol for controllable on-surface synthesis with the aid of robust coordination interactions.

3.
Phys Rev Lett ; 119(5): 056801, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949707

ABSTRACT

The frontier orbital sequence of individual dicyanovinyl-substituted oligothiophene molecules is studied by means of scanning tunneling microscopy. On NaCl/Cu(111), the molecules are neutral, and the two lowest unoccupied molecular states are observed in the expected order of increasing energy. On NaCl/Cu(311), where the molecules are negatively charged, the sequence of two observed molecular orbitals is reversed, such that the one with one more nodal plane appears lower in energy. These experimental results, in open contradiction with a single-particle interpretation, are explained by a many-body theory predicting a strongly entangled doubly charged ground state.

4.
J Am Chem Soc ; 138(17): 5585-93, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27059121

ABSTRACT

Regioselectivity is of fundamental importance in chemical synthesis. Although many concepts for site-selective reactions are well established for solution chemistry, it is not a priori clear whether they can easily be transferred to reactions taking place on a metal surface. A metal will fix the chemical potential of the electrons and perturb the electronic states of the reactants because of hybridization. Additionally, techniques to characterize chemical reactions in solution are generally not applicable to on-surface reactions. Only recent developments in resolving chemical structures by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) paved the way for identifying individual reaction products on surfaces. Here we exploit a combined STM/AFM technique to demonstrate the on-surface formation of complex molecular architectures built up from a heteroaromatic precursor, the tetracyclic pyrazino[2,3-f][4,7]phenanthroline (pap) molecule. Selective intermolecular aryl-aryl coupling via dehydrogenative C-H activation occurs on Au(111) upon thermal annealing under ultrahigh vacuum (UHV) conditions. A full atomistic description of the different reaction products based on an unambiguous discrimination between pyrazine and pyridine moieties is presented. Our work not only elucidates that ortho-hydrogen atoms of the pyrazine rings are preferentially activated over their pyridine equivalents, but also sheds new light onto the participation of substrate atoms in metal-organic coordination bonding during covalent C-C bond formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...