Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894016

ABSTRACT

We investigated micro-threaded stem taper surface and its impact on premature failures, aseptic loosening, and infection in cementless hip endoprostheses. Our study focused on the fretting, and crevice corrosion of micro-threaded tapers, as well as the characterization of the microstructure and surface properties of two new and three retrieved Zweymüller stem tapers. The retrieved samples were selected and examined based on the head-stem taper interface being the sole source of modularity with a metallic component, specifically between the Ti alloy taper stem and the ceramic head. To determine the surface chemistry and microstructures of both new and retrieved hip endoprostheses stem taper titanium alloy, scanning -electron microscopy (SEM) was employed for morphological and microstructural analyses. Energy dispersive spectroscopy (EDS) was utilized for characterizing chemical element distribution, and electron backscattered diffraction (EBSD) was used for phase analysis. The roughness of the micro-threated stem tapers from different manufacturers was investigated using an optical profilometer, with standard roughness parameters Ra (average surface roughness) and Rz (mean peak to valley height of the roughness profile) being measured. Electrochemical studies revealed no fretting corrosion in retrieved stem tapers with ceramic heads. Consequently, three retrieved tapers and two new ones for comparison underwent potentiodynamic measurements in Hank's solution to determine the corrosion rate of new and retrieved stem taper surfaces. The results showed a low corrosion rate for both new and prematurely failed retrieved samples due to aseptic loosening. However, the corrosion rate was higher in infected and low-grade infected tapers. In conclusion, our study suggests that using ceramic heads reduces taper corrosion and subsequently decreases the incidence of premature failures in total hip arthroplasty.

2.
Materials (Basel) ; 16(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834752

ABSTRACT

Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity's influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50-200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.

3.
Materials (Basel) ; 16(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37687537

ABSTRACT

In the present work, the functionalisation of austenitic stainless steel, AISI 316L surfaces via nanosecond Nd:YAG laser texturing in order to modify the surface morphology with crosshatch and dimple patterns is presented. A tribological analysis under lubrication with sunflower and jojoba oil with and without the addition of a solid lubricant, MoS2 nanotubes, was performed. In conjunction with friction/wear response laser-textured surface wettability, oil spreadability and oil retention capacity were also analysed. It was shown that the crosshatch pattern generally exhibited lower friction than the dimple pattern, with the addition of MoS2 nanotubes not having any significant effect on the coefficient of friction under the investigated contact conditions. This was found in addition to the better oil spreadability and oil retention capacity results of the crosshatch-textured surface. Furthermore, texturing reduced the wear of the stainless-steel surfaces but led to an approximately one order of magnitude larger wear rate of the steel counter-body, primarily due to the presence of hard bulges around the textured patterns. Overall, the crosshatch pattern showed better oil retention capacity and lower friction in combination with different vegetable oils, thus making it a promising choice for improving tribological performance in various environmentally friendly applications.

4.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295470

ABSTRACT

In our study, plasma surface modification was employed to tailor the surface properties of magnesium in terms of surface chemistry, topography, and wettability. For two sets of samples, the plasma treatment involved two steps using two different gases (hydrogen and oxygen), while one set of samples was treated with one step only using oxygen. X-ray photoelectron spectroscopy (XPS) was applied to determine the surface composition, oxidation state of the elements, and the thickness of the surface oxide layer on the Mg samples after different plasma treatments. The surface morphology was characterised using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The wettability was analysed by measuring the static water-contact angles and the corrosion was evaluated using potentiodynamic measurements. The interaction of the live cells with the differently modified Mg surfaces was evaluated in terms of biocompatibility using MG-63 cells (human bone osteosarcoma cells). We have shown that a plasma surface treatment significantly decreased the carbon content and the formation of a 15-20-nm-thick MgO layer was observed. This improves the corrosion resistance, while the biocompatibility was retained, compared to the untreated Mg. A plasma surface treatment is therefore an important step in the development of novel surfaces with improved corrosion resistance for magnesium in biomedical applications.

5.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683120

ABSTRACT

The scope of the Special Issue entitled "Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials" includes research regarding the latest developments in materials' mechanical properties and characterization, pure/applied corrosion phenomena, and advanced understanding of bacterial adhesion and the induced antibacterial properties of metallic materials [...].

6.
Materials (Basel) ; 15(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35591309

ABSTRACT

A Nd-YAG laser was used for texturing the Ti6Al4V surface with dimples of diameter 50 and 100 µm and centre-to-centre distance 100, 200 and 400 µm, defining the surface texture density. The tribological evaluation was conducted to analyse and compare the behaviour of un-textured and laser-textured samples under water in comparison to oil (PAO6) lubrication without and with the addition of MoS2 nanotubes into the lubricant. MoS2 nanotubes had a positive effect on friction in both media for laser-textured Ti6Al4V. Evaluation of friction and wear in water and PAO6 showed a comparable tribological response in water to oil for specific laser-textured configurations, proving the novel concept of green tribology for laser texturing in combination with MoS2 nanotubes/water lubrication.

7.
Materials (Basel) ; 14(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885499

ABSTRACT

Laser-powder bed fusion (LPBF) is one of the preferred techniques for producing Co-Cr metal structures for dental prosthodontic appliances. However, there is generally insufficient information about material properties related to the production process and parameters. This study was conducted on samples produced from three different commercially available Co-Cr dental alloys produced on three different LPBF machines. Identically prepared samples were used for tensile, three-point bending, and toughness tests. Light microscopy (LM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) analyses of microstructure were performed after testing. Differences were observed in microstructures, which reflected statistically significant differences in mechanical properties (one-way analysis of variance (ANOVA) and Scheffé post hoc test (α = 0.05)). The material produced on the 3D Systems DMP Dental 100 had 24 times greater elongation ε than the material produced on the Sysma MySint 100 device and the EOS M100 machine. On the other hand, the material produced on the EOS M100 had significantly higher hardness (HV0.2) than the other two produced materials. However, the microstructure of the Sysma specimens with its morphology deviates considerably from the studied group. LPBF-prepared Co-Cr dental alloys demonstrated significant differences in their microstructures and, consequently, mechanical properties.

8.
Sci Rep ; 11(1): 19506, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593952

ABSTRACT

The key feature of Fe-Mn alloys is gradual degradability and non-magneticity, with laser power bed fusion (LPBF) parameters influencing the microstructure and chemical composition. Our study focuses on biodegradable Fe-Mn alloys produced by mechanically mixing pure metal feedstock powders as part of the LPBF process. The Mn content and, consequently, the γ-ε phase formation in LPBF samples are directly correlated with an adapted energy-density (E) equation by combining the five primary LPBF parameters. We varied laser power (P) in a range of 200-350 W and scanning speed at 400 and 800 mm/s, and a comprehensive study was performed on samples with similar E. The study also showed an almost linear correlation between the LPBF's laser power and the material's hardness and porosity. The corrosion resistance was significantly reduced (from 13 to 400 µm/year) for the LPBF samples compared to a conventionally produced sample due to the dual-phase microstructure, increased porosity and other defects. The static immersion test showed that the process parameters greatly influence the quantity of oxides and the distribution of their diameters in the LPBF samples and, therefore, their corrosion stability. The most challenging part of the study was reducing the amount of ε phase relative to γ phase to increase the non-magnetic properties of the LPBF samples.

9.
Materials (Basel) ; 13(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260518

ABSTRACT

An AISI 316L surface was functionalized by the adsorption of hydrophilic epoxy and epoxy/TiO2/epoxy coatings and hydrophobic epoxy/fluoroalkylsilanefunctionalized FASTiO2/epoxy coatings. We characterized the coatings' wettability, morphology and average surface roughness and discussed the influence of surface wettability and morphology on the coefficient of friction and the wear resistance. Experiments were performed in dry, distilled water and in a simulated physiological solution (Hank's solution). In the case of dry sliding, a lower coefficient of friction is achieved for both TiO2 coatings compared to the pure epoxy coating. In a water environment the same level of friction is shown for all three coatings, whereas in Hank's solution the friction is reduced for the hydrophilic epoxy/TiO2/epoxy coating, increased for the hydrophobic epoxy/FASTiO2/epoxy coating and has no effect on the pure epoxy coating. The results show that the corrosion resistance is significantly improved for the hydrophobic epoxy/FASTiO2/epoxy coating compared to the hydrophilic pure epoxy and epoxy/TiO2/epoxy coatings.

10.
Materials (Basel) ; 12(11)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212615

ABSTRACT

Epoxy/TiO2/epoxy and epoxy/FAS-TiO2/epoxy coatings were applied to the surface of AISI 316L stainless steel with the aim to improve the biocompatibility and antibacterial properties. Contact-angle measurements were used to evaluate the wetting properties of the epoxy, epoxy/TiO2/epoxy and epoxy/FAS-TiO2/epoxy coatings. The epoxy and epoxy/TiO2/epoxy coatings were hydrophilic compared with the strongly hydrophobic epoxy/FAS-TiO2/epoxy coating. The average surface roughness (Sa) of the epoxy/FAS-TiO2/epoxy coating was higher than that of the epoxy/TiO2/epoxy coating due to the formation of agglomerates. The biocompatibility evaluation revealed that the cell attachment was significantly higher on the epoxy/FAS-TiO2/epoxy and epoxy/TiO2/epoxy coatings compared with the pure epoxy coating. We also observed improved antibacterial properties for the epoxy coatings with the addition of both TiO2 and FAS-TiO2 nanoparticles.

11.
J Biomed Mater Res B Appl Biomater ; 100(3): 799-807, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22331841

ABSTRACT

A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions.


Subject(s)
Materials Testing , Stainless Steel/chemistry , Electrochemistry , Oxidation-Reduction , Photoelectron Spectroscopy
12.
Biomed Mater ; 5(4): 045012, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20683125

ABSTRACT

The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.


Subject(s)
Hip Joint/pathology , Hip Prosthesis/adverse effects , Joint Instability/etiology , Joint Instability/pathology , Prosthesis-Related Infections/etiology , Prosthesis-Related Infections/pathology , Stainless Steel/adverse effects , Equipment Failure Analysis , Hip Joint/drug effects , Hip Joint/surgery , Humans , Male , Middle Aged
13.
Biofouling ; 25(6): 481-93, 2009.
Article in English | MEDLINE | ID: mdl-19373571

ABSTRACT

Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.


Subject(s)
Fluorine , Polymers , Siloxanes , Thoracica/drug effects , Ulva/drug effects , Adhesiveness , Animals , Dimethylpolysiloxanes/chemical synthesis , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Fluorine/chemistry , Fluorine/pharmacology , Polymers/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Siloxanes/chemistry , Siloxanes/pharmacology , Surface Properties , Thoracica/physiology , Ulva/physiology
14.
Biofouling ; 25(1): 55-67, 2009.
Article in English | MEDLINE | ID: mdl-18855197

ABSTRACT

SiO(x)-like coatings were deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD (PACVD). Surface energies (23.1-45.7 mJ m(-1)) were correlated with the degree of surface oxidation and hydrocarbon contents. Tapping mode AFM revealed a range of surface topologies with Ra values 1.55-3.16 nm and RMS roughness 1.96-4.11 nm. Settlement of spores of the green alga Ulva was significantly less, and detachment under shear significantly more on the lowest surface energy coatings. Removal of young plants (sporelings) of Ulva under shear was positively correlated with reducing the surface energy of the coatings. The most hydrophobic coatings also showed good performance against a freshwater bacterium, Pseudomonas fluorescens, significantly reducing initial attachment and biofilm formation, and reducing the adhesion strength of attached bacterial cells under shear. Taken together the results indicate potential for further investigation of these coatings for applications such as heat exchangers and optical instruments.


Subject(s)
Bacteria/drug effects , Bacteria/growth & development , Biofilms/drug effects , Biofilms/growth & development , Eukaryota/drug effects , Eukaryota/growth & development , Silicon Dioxide/pharmacology , Water Microbiology , Bacteria/classification , Diatoms/drug effects , Diatoms/growth & development , Dimethylpolysiloxanes/chemistry , Eukaryota/classification , Glass , Halomonadaceae/drug effects , Halomonadaceae/growth & development , Hydrophobic and Hydrophilic Interactions , Marinobacter/drug effects , Marinobacter/growth & development , Nanostructures , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/growth & development , Spores/growth & development , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Surface Properties , Ulva/drug effects , Ulva/growth & development , Volatilization
15.
J Mater Sci Mater Med ; 15(6): 643-50, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15346730

ABSTRACT

The composition of the passive layers formed by electrochemical oxidation at different passivation potentials on Co-Cr-Mo and Co-Ni-Cr-Mo alloys in simulated physiological solution (SPS), with and without the complexing agent EDTA, was studied by X-ray photoelectron spectroscopy. Composition as a function of depth, cationic fraction and thickness of the passive film was determined. Chromium oxide is shown to be the major constituent of the passive layer on both Co-Cr-Mo and Co-Ni-Cr-Mo alloys. The minor constituents of the passive layers, Co- and Mo-oxide in the case of Co-Cr-Mo alloy and Ni-, Co- and Mo-oxides in the case of Co-Ni-Cr-Mo alloy, are also located in the outer part of the layer. EDTA affects the formation of the passive layer on each alloy. The content of Co-, Ni- and Mo-oxide in the passive layer is lower in the presence of EDTA, thus indicating increased solubility associated with higher stability constants for complexes of metal cations with EDTA.


Subject(s)
Alloys/chemistry , Body Fluids/chemistry , Coated Materials, Biocompatible/chemistry , Electrochemistry/methods , Oxides/chemistry , Prostheses and Implants , Spectrometry, X-Ray Emission/methods , Vitallium/chemistry , Chromium Alloys/chemistry , Corrosion , Edetic Acid/chemistry , Macromolecular Substances , Materials Testing/methods , Molecular Conformation , Orthopedic Equipment , Orthopedics/methods , Surface Properties
16.
J Mater Sci Mater Med ; 14(1): 69-77, 2003 Jan.
Article in English | MEDLINE | ID: mdl-15348541

ABSTRACT

The present work is devoted to the problem of biodegradation of orthopaedic implants manufactured from stainless steel. In vitro simulations of the biocompatibility of two types of stainless steel, AISI 304 and AISI 316L, and their individual metal components, i.e. iron, chromium, nickel and molybdenum, were carried out in simulated physiological solution (Hank's) containing complexing agents. Knowledge of the effects of the chemical and biological complexing agents, EDTA and proteins, respectively, on the corrosion resistance of a metal should provide a better understanding of the processes occurring in vivo on its surface. The behavior of stainless steels and metal components was studied under open circuit and under potentiostatic conditions. The concentration of dissolved corrosion products in the form of released ions was determined by differential pulse polarography (DPP) and atomic emission spectrometry using inductively coupled plasma (ICP-AES). The composition of solid corrosion products formed on the surface was analyzed by energy dispersive X-ray spectroscopy (EDS) and their morphology was viewed by scanning electron microscopy (SEM). The addition of EDTA and proteins to physiological solution increased the dissolution of pure metals and stainless steels. The effect of particular protein differs on different metals and alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...