Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
World J Microbiol Biotechnol ; 39(5): 127, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36941452

ABSTRACT

Laccases highlight for xenobiotic bioremediation, as well as application in the fine chemical, textile, biofuel and food industries. In a previous work, we described the preliminary characterization of laccase LacMeta, a promising enzyme for the bioremediation of dyes, able to decolorization malachite green (MG), trypan blue, methylene blue. Here we demonstrate that LacMeta is indeed suitable for the complete degradation and detoxification of MG dye, not just for its discoloration, since some works show false positives due to the formation of colorless intermediates such as leucomalachite. The optimal pH and temperature parameters of LacMeta were 5.0 and 50 °C, respectively (MG as substrate). LacMeta was tolerant of up to 10 mmol L- 1 EDTA (82%) and up to 5% (V/V) acetone (91%) and methanol (71%), while SDS promoted severe inhibition. For ions, a high tolerance to cobalt, zinc, manganese, and calcium (10 mmol L- 1) was also observed (> 90%). Even under high-salinity conditions (1 mol L- 1 NaCl), the residual bleaching activity of the dye remained at 61%. Furthermore, the bleaching product of MG did not inhibit the germination of sorghum and tomato seeds and was inert to the vegetative structures of the germinated seedlings. Additionally, this treatment effectively reduced the cytotoxic effect of the dye on microorganisms (Escherichia coli and Azospirillum brasilense), which can be explained by H-NMR spectral analysis results since LacMeta completely degraded the peak signals corresponding to the aromatic rings in the dye, demonstrating extreme efficiency in the bioremediation of the xenobiotic at high concentrations (50 mg L- 1).


Subject(s)
Laccase , Xenobiotics , Laccase/metabolism , Rosaniline Dyes/metabolism , Coloring Agents/metabolism , Biodegradation, Environmental
2.
Food Chem ; 397: 133800, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35914461

ABSTRACT

Cooking is essential for preparing starch-based food, however thermal treatment promotes the complexation of biopolymers, impacting their final properties. Comprehensive Multiphase (CMP) NMR allows all phases (liquids, gels, and solids) to be differentiated and monitored within intact samples. This study acts as a proof-of-principle to introduce CMP-NMR to food research and demonstrate its application to monitor the various phases in spaghetti, black turtle beans, and white long-grain rice, and how they change during the cooking process. When uncooked, only a small fraction of lipids and structurally bound water show any molecular mobility. Once cooked, little "crystalline solid" material is left, and all components exhibit increased molecular dynamics. Upon cooking, the solid-like components in spaghetti contains signals consistent with cellulose that were buried beneath the starches in the uncooked product. Thus, CMP-NMR holds potential for the study of food and related processes involving phase changes such as growth, manufacturing, and composting.


Subject(s)
Oryza , Starch , Cooking , Magnetic Resonance Spectroscopy , Oryza/chemistry , Starch/chemistry , Triticum/chemistry
3.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408459

ABSTRACT

The use of UV-C cool white light on bean (Phaseolus vulgaris L.) seeds significantly increases the biochemical seed coat post-harvest darkening process, whilst preserving seed germination. The aim of this work consists in monitoring the effect caused by the incidence of UV-C light on different bean genotypes using NMR spectroscopy. The genotype samples named IAC Alvorada; TAA Dama; BRS Estilo and BRS Pérola from the Agronomic Institute (IAC; Campinas; SP; Brazil) were evaluated. The following two methodologies were used: a prolonged darkening, in which the grain is placed in a room at a controlled temperature (298 K) and humidity for 90 days, simulating the supermarket shelf; an accelerated darkening, where the grains are exposed to UV-C light (254 nm) for 96 h. The experiments were performed using the following innovative time-domain (TD) NMR approaches: the RK-ROSE pulse sequence; one- and two-dimensional high resolution (HR) NMR experiments (1H; 1H-1H COSY and 1H-13C HSQC); chemometrics tools, such as PLS-DA and heat plots. The results suggest that the observed darkening occurs on the tegument after prolonged (90 days) and accelerated (96 h) conditions. In addition, the results indicate that phenylalanine is the relevant metabolite within this context, being able to participate in the chemical reactions accounted for by the darkening processes. Additionally, it is possible to confirm that a UV-C lamp accelerates oxidative enzymatic reactions and that the NMR methods used were a trustworthy approach to monitor and understand the darkening in bean seeds at metabolite level.


Subject(s)
Phaseolus , Edible Grain , Genotype , Magnetic Resonance Spectroscopy , Phaseolus/genetics , Phaseolus/metabolism , Seeds/genetics , Seeds/metabolism
4.
Chemistry ; 27(5): 1849-1859, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33184913

ABSTRACT

Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Organometallic Compounds/chemistry , Protons
5.
Magn Reson Chem ; 58(10): 917-920, 2020 10.
Article in English | MEDLINE | ID: mdl-32562503

ABSTRACT

We report the catalytic activity for the complexes-cis-[RuCl2 (dppb)(bipy)] (A), and [η6 -(p-cymene)Ru (dppb)Cl]PF6 (B), wherein dppb = 1,4-bis(diphenylphosphine)butane, and bipy = 2,2'-bipyridine-for the synthesis of CDCl3 from CHCl3 using D2 O as deuterium source. H/D exchange reactions were performed using a chloroform/D2 O, 1:2 molar ratio, vigorously stirred, at room temperature. One mole of KOH was dissolved in D2 O fraction and catalytic complexes from 0.002 to 0.05 mmol were dissolved in chloroform. The H/D exchange reactions were monitored using 13 C nuclear magnetic resonance sequences without proton decoupling. The reaction using 0.01 mmol of compound A reached approximately 55% of H/D conversion in 1 h. In the same time, the reactions with 0.002 mmol of compound A and without catalyst show approximately 28% and 3% H/D exchange, respectively. Without the catalysts, the H/D exchange was only 12.0% in 5 h. For compound B, 55% H/D conversion was observed in 1 h, only when 0.05 mmol was used, which is much higher catalyst concentration. After the isolation of the chloroform fraction and two more addition of D2 O, it was possible to obtain 95.0% H/D exchange in approximately 3 h, using 0.01 mmol of the compound A. Therefore, compound A is an efficient catalyst for a rapid and straightforward synthesis of CDCl3 from CHCl3 at room temperature and using D2 O as deuterium source.

6.
Front Chem ; 7: 762, 2019.
Article in English | MEDLINE | ID: mdl-31781544

ABSTRACT

Lawsone itself exhibits interesting biological activities, and its complexation with a metal center can improve the potency. In this context a cytotoxic Ru-complex, [Ru(law)(dppb)(bipy)] (law = lawsone, dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), named as CBLAU, was prepared as reported. In this work, NMR binding-target studies were performed to bring to light the most accessible interaction sites of this Ru-complex toward Calf-Thymus DNA (CT-DNA, used as a model), in a similar approach used for other metallic complexes with anti-cancer activity, such as cisplatin and carboplatin. Advanced and robust NMR binding-target studies, among them Saturation Transfer Difference (STD)-NMR and longitudinal relaxometry (T1), were explored. The 1H and 31P -NMR data indicate that the structure of Ru-complex remains preserved in the presence of CT-DNA, and some linewidth broadening is also observed for all the signals, pointing out some interaction. Looking at the binding efficiency, the T1 values are highly influenced by the formation of the CBLAU-DNA adduct, decreasing from 11.4 s (without DNA) to 1.4 s (with DNA), where the difference is bigger for the lawsone protons. Besides, the STD-NMR titration experiments revealed a stronger interaction (KD = 5.9 mM) for CBLAU-DNA in comparison to non-complexed lawsone-DNA (KD = 34.0 mM). The epitope map, obtained by STD-NMR, shows that aromatic protons from the complexed lawsone exhibits higher saturation transfer, in comparison to other Ru-ligands (DPPB and bipy), suggesting the supramolecular contact with CT-DNA takes place by the lawsone face of the Ru-complex, possibly by a spatial π-π stacking involving π-bonds on nucleic acids segments of the DNA chain and the naphthoquinone group.

7.
Magn Reson Chem ; 57(7): 404-411, 2019 07.
Article in English | MEDLINE | ID: mdl-30864253

ABSTRACT

Although the Cu2+ -sorbitol complex [Cu2+ -Sorb] structure in crystalline state has been determined by X rays, it is not known in solution, where most studies of this complex are performed. Therefore, the goal of this work was to obtain information about the structure of this complex in aqueous solution using nuclear magnetic resonance and electron paramagnetic resonance spectroscopies. The magnetic resonance results indicate that the complex is formed at approximately pH 12. In this pH the sorbitol 1 H relaxation times were so short (broad line) that was not possible to use standard nuclear magnetic resonance parameters (nuclear Overhauser effect and spin-spin coupling constants values) to solve the three-dimensional structure. However, valuable structural information about the complex in solution was obtained. The relaxation results indicate that the Cu2+ ions are buried in the structure and not accessible to solvent; the 1 H and 13 C spectra shows strong paramagnetic shift effect indicating short distance between these nuclei and Cu2+ in the structure. No electron paramagnetic resonance signal was observed in pH 12 indicating strong Cu2+ - Cu2+ dipolar interaction, compatible to Cu2+ -Cu2+ distances measured in crystal, from 1.148 to 1.393 Angstroms. The complex self-diffusion coefficient (D) of 1.58 × 10-10  m2 /s value, determined by Diffusion-Ordered Spectroscopy, is compatible to a molecular weight of 3-6 KDa. Therefore, these results corroborate that the [Cu2+ -Sorb] complex is assembled in solution, at pH 12, with several structural parameters compatible to the toroidal hexadecacuprate supramolecular structure determined in solid state.

8.
Int J Biol Macromol ; 98: 228-232, 2017 May.
Article in English | MEDLINE | ID: mdl-28119190

ABSTRACT

Chitosan (CHI)-paramagnetic ion interactions in aqueous solution as affected by pH were studied using time-domain NMR (TD-NMR) relaxometry. Longitudinal (T1) and transverse (T2) relaxation times of CHI solutions with Fe3+, Cu2+, and Mn2+ were measured using a single-shot pulse sequence named CP-CWFPx-x. The results indicate that CHI interacted with Fe3+ ions or iron oxide nanoparticles, maintaining the metal ion in solution at pH ranging from 3 to 5. Above this pH, CHI coagulated and removed Fe ions or nanoparticles, resulting in a clear supernatant. CHI probably interacted with Cu ions at pH 6.2 through the deprotonated CHI-NH2 groups maintaining the relaxation effect in alkaline solution, whereas Mn2+ did not interact with CHI strongly enough to produce a complex of high stability. The proposed method can also be further exploited in the study of interactions paramagnetic ions with others CHI and CHI derivatives as well as of other water-soluble polysaccharides.


Subject(s)
Chitosan/chemistry , Magnetic Phenomena , Magnetic Resonance Spectroscopy/methods , Hydrogen-Ion Concentration , Solutions , Time Factors
9.
Carbohydr Polym ; 150: 1-4, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27312606

ABSTRACT

Time-domain NMR relaxometry was proposed as a simple, rapid method to monitor chitosan (CS) coagulation as a function of pH. The longitudinal (T1) and transverse (T2) relaxation times of three CS concentrations (0.022, 0.22, and 2.2gL(-1)) were simultaneously measured by CP-CWFPx-x pulse sequences in a 0.47T spectrometer. T1 and T2 were shown to be independent of pH as well as to assume values similar to the relaxation time of water (2.7s) at the lowest tested CS concentration. At the highest concentration, T1 increased whereas T2 decreased as pH varied from 6.0 to 7.0. This indicates a remarkable effect of CS on water relaxation at pH values higher than the pKa of CS amino groups (6.5). Therefore, CS reduced the water mobility at the highest CS concentration and greatest pH values, suggesting a CS supramolecular structure (gel) that entraps the solvent in confined regions. The method proposed here can be further used to study the coagulation of other polysaccharides.


Subject(s)
Chitosan/chemistry , Magnetic Resonance Spectroscopy/methods , Time Factors , Water/chemistry
10.
Bioinorg Chem Appl ; 2015: 942147, 2015.
Article in English | MEDLINE | ID: mdl-26347596

ABSTRACT

Complexes of gadolinium(III) with N-octanoyl-N-methylglucamine (L8) and N-decanoyl-N-methylglucamine (L10) with 1 : 2 stoichiometry were synthesized and characterized by elemental analysis, electrospray ionization-tandem mass spectrometry (ESI-MS), infrared (IR) spectroscopy, and molar conductivity measurements. The transverse (r 2) and longitudinal (r 1) relaxivity protons were measured at 20 MHz and compared with those of the commercial contrasts. These complexes were incorporated in liposomes, resulting in the increase of the vesicle zeta potential. Both the free and liposome-incorporated gadolinium complexes showed high relaxation effectiveness, compared to commercial contrast agent gadopentetate dimeglumine (Magnevist). The high relaxivity of these complexes was attributed to the molecular rotation that occurs more slowly, because of the elevated molecular weight and incorporation in liposomes. The results establish that these paramagnetic complexes are highly potent contrast agents, making them excellent candidates for various applications in molecular MR imaging.

SELECTION OF CITATIONS
SEARCH DETAIL