Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
An Acad Bras Cienc ; 95(4): e20200463, 2023.
Article in English | MEDLINE | ID: mdl-37729300

ABSTRACT

Although it is known that organophosphate insecticides are harmfull to aquatic ecosystems, oxidative damages caused by Dimethoate and Chlorpyrifos are not studied on Arthrospira platensis Gomont. In this study, various Chlorpyrifos (0-150 µg mL-1) and Dimethoate (0-250 µg mL-1) concentrations were added to the culture medium in laboratory to evaulate growth rate, chlorophyll-a content and antioxidant parameters of A. platensis. Optical Density (OD560) and chlorophyll-a decreased compared to the control for seven days in both pesticide applications. Superoxide dismutase (SOD) activity increased at 50 µg mL-1 Chlorpyrifos concentration but it decreased at all concentrations. Although Ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased with Chlorpyrifos application, they did not change with Dimethoate application. Malondialdehyde (MDA) amount decreased at 150 µg mL-1 Chlorpyrifos concentration but it increased in Dimethoate application. The H2O2 content were increased in both applications. Proline decreased in 50 and 75 µg mL-1 Chlorpyrifos concentrations and increased at 150 µg mL-1 concentration, while it increased at 25 µg mL-1 Dimethoate concentration. The results were tested at 0.05 significance level. These pesticides inhibit A. platensis growth and chlorophyll-a production and cause oxidative stress. The excessive use may affect the phytoplankton and have negative consequences in the aquatic ecosystem.


Subject(s)
Chlorpyrifos , Insecticides , Pesticides , Insecticides/toxicity , Chlorpyrifos/toxicity , Dimethoate/toxicity , Ecosystem , Hydrogen Peroxide , Oxidative Stress , Pesticides/toxicity , Antioxidants , Chlorophyll , Chlorophyll A , Organophosphorus Compounds
SELECTION OF CITATIONS
SEARCH DETAIL