Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Cheminform ; 16(1): 16, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326906

ABSTRACT

As scientific digitization advances it is imperative ensuring data is Findable, Accessible, Interoperable, and Reusable (FAIR) for machine-processable data. Ontologies play a vital role in enhancing data FAIRness by explicitly representing knowledge in a machine-understandable format. Research data in catalysis research often exhibits complexity and diversity, necessitating a respectively broad collection of ontologies. While ontology portals such as EBI OLS and BioPortal aid in ontology discovery, they lack deep classification, while quality metrics for ontology reusability and domains are absent for the domain of catalysis research. Thus, this work provides an approach for systematic collection of ontology metadata with focus on the catalysis research data value chain. By classifying ontologies by subdomains of catalysis research, the approach is offering efficient comparison across ontologies. Furthermore, a workflow and codebase is presented, facilitating representation of the metadata on GitHub. Finally, a method is presented to automatically map the classes contained in the ontologies of the metadata collection against each other, providing further insights on relatedness of the ontologies listed. The presented methodology is designed for its reusability, enabling its adaptation to other ontology collections or domains of knowledge. The ontology metadata taken up for this work and the code developed and described in this work are available in a GitHub repository at: https://github.com/nfdi4cat/Ontology-Overview-of-NFDI4Cat .

2.
Front Chem ; 11: 1244043, 2023.
Article in English | MEDLINE | ID: mdl-37608867

ABSTRACT

The transfer from batch to flow chemistry is often based on commercial microfluidic equipment, such as costly complete reactor systems, which cannot be easily tailored to specific requirements of technologies such as DNA-encoded library technology (DELT), in particular for increasingly important photochemical reactions. Customized photoreactor concepts using rapid prototyping technology offer a modular, flexible, and affordable design that allows for adaptation to various applications. In order to validate the prototype reactors, a photochemical pinacol coupling reaction at 368 nm was conducted to demonstrate the transfer from batch to flow chemistry. The conversion rates were optimized by adapting the design parameters of the microfluidic flow photoreactor module. Subsequently, the photoreactor module has been extended to an application with DNA-tagged substrates by switching to LEDs with a wavelength of 454 nm. The successful recovery of DNA confirmed the feasibility of the modular-designed flow photo reactor. This collaborative approach holds enormous potential to drive the development of DELT and flow equipment design.

3.
Materials (Basel) ; 16(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770009

ABSTRACT

The knowledge of product particle size distribution (PSD) in crystallization processes is of high interest for the pharmaceutical and fine chemical industries, as well as in research and development. Not only can the efficiency of crystallization/production processes and product quality be increased but also new equipment can be qualitatively characterized. A large variety of analytical methods for PSDs is available, most of which have underlying assumptions and corresponding errors affecting the measurement of the volume of individual particles. In this work we present a method for the determination of particle volumes in a bulk sample via micro-computed tomography and the application of artificial intelligence. The particle size of bulk samples of sucrose were measured with this method and compared to classical indirect measurement methods. Advantages of the workflow are presented.

4.
ACS Omega ; 7(32): 28369-28377, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990424

ABSTRACT

DNA-encoded library technologies require high-throughput, compatible, and well automatable platforms for chemistry development, building block rehearsal, and library synthesis. An affinity-based process using Watson-Crick interactions was developed that enables purification of DNA-tagged compounds from complex reaction mixtures. The purification relies on a single-stranded DNA-oligonucleotide, called capture strand, which was covalently coupled to an agarose matrix and to which a DNA-compound conjugate from a DNA-encoded library (DEL) reaction can be reversibly annealed to. The thus-formed DNA duplex tolerated surprisingly stringent washing conditions with multiple solvents to remove excess reactants and reagents. The tolerated solvents included aqueous buffers, aqueous EDTA solutions to remove metal ions, aqueous mixtures of organic solvents, and even pure organic solvents. The purified DNA-conjugate was eluted with aqueous ammonia and could be used for reaction analysis or for instance in DNA-encoded library synthesis. The lab equipment for purification was tailored for automation with open-source hardware and constructed by 3D printing.

5.
ACS Comb Sci ; 22(3): 101-108, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32053337

ABSTRACT

Laboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions. Particularly, the technology of DNA-encoded libraries (DELs) may benefit from automation techniques, since translation of chemical reactions to DNA-tagged reactants often requires screening of multiple reaction parameters and evaluation of large numbers of reactants. Here, we describe a portable, automated system for reagent dispensing that was designed from open source materials. The system was validated by performing amide coupling of carboxylic acids to DNA-linked amine and a micelle-mediated Povarov reaction to DNA-tagged hexahydropyrroloquinolines. The latter reaction required accurate pipetting of multiple components including different solvents and a surface-active reagent. Analysis of reactions demonstrated that the robotic system achieved high accuracy comparable to experimentation by an experienced chemist with the potential of higher throughput.


Subject(s)
Amides/chemistry , Amines/chemistry , Carboxylic Acids/chemistry , Combinatorial Chemistry Techniques , DNA/chemistry , Pyrroles/chemical synthesis , Quinolines/chemical synthesis , Automation , Drug Design , Drug Evaluation, Preclinical , Molecular Structure , Pyrroles/chemistry , Quinolines/chemistry
6.
Anal Chem ; 88(19): 9368-9374, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27603732

ABSTRACT

In process analytics, the applicability of Raman spectroscopy is restricted by high excitation intensities or the long integration times required. In this work, a novel Raman system was developed to minimize photon flux losses. It allows specific reduction of spectral resolution to enable the use of Raman spectroscopy for real-time analytics when strongly increased sensitivity is required. The performance potential of the optical setup was demonstrated in two exemplary applications: First, a fast exothermic reaction (Michael addition) was monitored with backscattering fiber optics under strongly attenuated laser power (7 mW). Second, high-speed scanning of a segmented multiphase flow (water/toluene) with submicroliter droplets was achieved by aligning the focus of a coaxial Raman probe with long focal length directly into a perfluoroalkoxy (PFA) capillary. With an acquisition rate of 333 Raman spectra per second, chemical information was obtained separately for both of the rapidly alternating phases. The experiment with reduced laser power demonstrates that the technique described in this paper is applicable in chemical production processes, especially in hazardous environments. Further potential uses can be envisioned in medical or biological applications with limited power input. The realization of high-speed measurements shows new possibilities for analysis of heterogeneous phase systems and of fast reactions or processes.

7.
ChemSusChem ; 6(5): 746-89, 2013 May.
Article in English | MEDLINE | ID: mdl-23606410

ABSTRACT

Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification.


Subject(s)
Chemistry Techniques, Synthetic , Chemical Engineering/methods , Green Chemistry Technology
8.
Chemistry ; 14(25): 7470-7, 2008.
Article in English | MEDLINE | ID: mdl-18613163

ABSTRACT

Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.


Subject(s)
Chemistry, Pharmaceutical/methods , Microfluidic Analytical Techniques/methods , Pharmaceutical Preparations/chemical synthesis , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/instrumentation , Equipment Design , Kinetics , Microfluidic Analytical Techniques/instrumentation , Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...