Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732842

ABSTRACT

Additive manufacturing of soft magnetic materials is a promising technology for creating topologically optimized electrical machines. High-performance electrical machines can be made from high-silicon-content FeSi alloys. Fe-6.5wt%Si material has exceptional magnetic properties; however, manufacturing this steel with the classical cold rolling methodology is not possible due to the brittleness of this material. Laser powder bed fusion technology (L-PBF) offers a solution to this problem. Finding the optimal printing parameters is a challenging task. Nevertheless, it is crucial to resolve the brittleness of the created materials so they can be used in commercial applications. The temperature dependence of magnetic hysteresis properties of Fe-6.5wt%Si materials is presented in this paper. The magnetic hysteresis properties were examined from 20 °C to 120 °C. The hysteresis measurements were made by a precision current generator-based hysteresis measurement tool, which uses fast Fourier transformation-based filtering techniques to increase the accuracy of the measurements. The details of the applied scalar hysteresis sensor and the measurement uncertainties were discussed first in the paper; then, three characteristic points of the static hysteresis curve of the ten L-PBF-manufactured identical toroidal cores were investigated and compared at different temperatures. These measurements show that, despite the volumetric ratio of the porosities being below 0.5%, the mean crack length in the samples is not significant for the examined samples. These small defects can cause a significant 5% decrement in some characteristic values of the examined hysteresis curve.

2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673921

ABSTRACT

In this present study, the material science background of crosslinked gelatin (GEL) was investigated. The aim was to assess the optimal reaction parameters for the production of a water-insoluble crosslinked gelatin matrix suitable for heat sterilization. Matrices were subjected to enzymatic degradation assessments, and their ability to withstand heat sterilization was evaluated. The impact of different crosslinkers on matrix properties was analyzed. It was found that matrices crosslinked with butanediol diglycidyl ether (BDDE) and poly(ethylene glycol) diglycidyl ether (PEGDE) were resistant to enzymatic degradation and heat sterilization. Additionally, at 1 v/v % crosslinker concentration, the crosslinked weight was lower than the starting weight, suggesting simultaneous degradation and crosslinking. The crosslinked weight and swelling ratio were optimal in the case of the matrices that were crosslinked with 3% and 5% v/v BDDE and PEGDE. FTIR analysis confirmed crosslinking, and the reduction of free primary amino groups indicated effective crosslinking even at a 1% v/v crosslinker concentration. Moreover, stress-strain and compression characteristics of the 5% v/v BDDE crosslinked matrix were comparable to native gelatin. Based on material science measurements, the crosslinked matrices may be promising candidates for scaffold development, including properties such as resistance to enzymatic degradation and heat sterilization.


Subject(s)
Cross-Linking Reagents , Epoxy Resins , Gelatin , Water , Gelatin/chemistry , Cross-Linking Reagents/chemistry , Water/chemistry , Polyethylene Glycols/chemistry , Hot Temperature , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Materials Testing , Spectroscopy, Fourier Transform Infrared , Solubility , Sterilization/methods
3.
Phys Rev Lett ; 121(16): 161103, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387640

ABSTRACT

The high rate of black hole (BH) mergers detected by LIGO/Virgo opened questions on their astrophysical origin. One possibility is the dynamical channel, in which binary formation and hardening is catalyzed by dynamical encounters in globular clusters (GCs). Previous studies have shown that the BH merger rate from the present day GC density in the Universe is lower than the observed rate. In this Letter, we study the BH merger rate by accounting for the first time for the evolution of GCs within their host galaxies. The mass in GCs was initially ∼8×higher, which decreased to its present value due to evaporation and tidal disruption. Many BH binaries that were ejected long before their merger originated in GCs that no longer exist. We find that the comoving merger rate in the dynamical channel from GCs varies between 18 to 35 Gpc^{-3} yr^{-1} between redshift z=0.5 to 2, and the total rate is 1, 5, 24 events per day within z=0.5, 1, and 2, respectively. The cosmic evolution and disruption of GCs systematically increases the present-day merger rate by a factor ∼2 relative to isolated clusters. Gravitational wave detector networks offer an unique observational probe of the initial number of GC populations and their subsequent evolution across cosmic time.

4.
Phys Rev Lett ; 121(10): 101101, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240263

ABSTRACT

Gravitational torques among objects orbiting a supermassive black hole drive the rapid reorientation of orbital planes in nuclear star clusters (NSCs), a process known as vector resonant relaxation. In this Letter, we determine the statistical equilibrium of systems with a distribution of masses, semimajor axes, and eccentricities. We average the interaction over the apsidal precession time and construct a Monte Carlo Markov chain method to sample the microcanonical ensemble of the NSC. We examine the case of NSCs formed by 16 episodes of star formation or globular cluster infall. We find that the massive stars and stellar mass black holes form a warped disk, while low mass stars resemble a spherical distribution with a possible net rotation. This explains the origin of the clockwise disk in the Galactic center and predicts a population of black holes (BHs) embedded within this structure. The rate of mergers among massive stars, tidal disruption events of massive stars by BHs, and BH-BH mergers are highly increased in such disks. The first two may explain the origin of the observed G1 and G2 clouds, the latter may be important for gravitational wave detections with LIGO and VIRGO. More generally, black holes are expected to settle in disks in all dense spherical stellar systems assembled by mergers of smaller systems including globular clusters.

5.
Phys Rev Lett ; 120(26): 261101, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004775

ABSTRACT

Recently, several gravitational wave detections have shown evidence for compact object mergers. However, the astrophysical origin of merging binaries is not well understood. Stellar binaries are typically at much larger separations than what is needed for the binaries to merge due to gravitational wave emission, which leads to the so-called final AU problem. In this Letter we propose a new channel for mergers of compact object binaries which solves the final AU problem. We examine the binary evolution following gas expansion due to a weak failed supernova explosion, neutrino mass loss, core disturbance, or envelope instability. In such situations the binary is possibly hardened by ambient gas. We investigate the evolution of the binary system after a shock has propagated by performing smoothed particle hydrodynamics simulations. We find that significant binary hardening occurs when the gas mass bound to the binary exceeds that of the compact objects. This mechanism represents a new possibility for the pathway to mergers for gravitational wave events.

6.
Phys Rev Lett ; 110(22): 221102, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23767710

ABSTRACT

Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

7.
Phys Rev Lett ; 107(17): 171103, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107500

ABSTRACT

We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters.

8.
Phys Rev Lett ; 101(4): 041101, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764315

ABSTRACT

Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...