Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ChemMedChem ; : e202400232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747628

ABSTRACT

Cobalt complexes exhibit versatile reactivity with nitric oxide (NO), enabling their utilization in applications ranging from homogeneous catalysis to NO-based modulation of biological processes. However, the coordination geometry around the cobalt center is complex, the therapeutic window of NO is narrow, and controlled NO delivery is difficult. To better understand the complexation of cobalt with NO, we prepared four cobalt nitrato complexes and present a structure-property relationship for ultrasound-triggerable NO release. We hypothesized that modulation of the coordination geometry by ligand-modification would improve responsiveness to mechanical stimuli, like ultrasound. To enable eventual therapeutic testing, we here first demonstrate the in vitro tolerability of [Co(ethylenediamine)2(NO)(NO3)](NO3) in A431 epidermoid carcinoma cells and J774A.1 murine macrophages, and we subsequently show successful encapsulation of the complex in poly(butyl cyanoacrylate) microbubbles. These hybrid Co-NO-containing microbubbles may in the future aid in ultrasound imaging-guided treatment of NO-responsive vascular pathologies.

2.
Small ; 18(18): e2200924, 2022 05.
Article in English | MEDLINE | ID: mdl-35363403

ABSTRACT

Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.


Subject(s)
Microbubbles , Organometallic Compounds , Carbon Monoxide , Endothelial Cells , Humans , Hypoxia , Precision Medicine , Reactive Oxygen Species
3.
Theranostics ; 11(19): 9557-9570, 2021.
Article in English | MEDLINE | ID: mdl-34646386

ABSTRACT

Purpose: Preclinical and clinical data indicate that contrast-enhanced ultrasound can enhance tumor perfusion and vessel permeability, thus, improving chemotherapy accumulation and therapeutic outcome. Therefore, we investigated the effects of high mechanical index (MI) contrast-enhanced Doppler ultrasound (CDUS) on tumor perfusion in breast cancer. Methods: In this prospective study, breast cancer patients were randomly assigned to receive either 18 minutes of high MI CDUS during chemotherapy infusion (n = 6) or chemotherapy alone (n = 5). Tumor perfusion was measured before and after at least six chemotherapy cycles using motion-model ultrasound localization microscopy. Additionally, acute effects of CDUS on vessel perfusion and chemotherapy distribution were evaluated in mice bearing triple-negative breast cancer (TNBC). Results: Morphological and functional vascular characteristics of breast cancer in patients were not significantly influenced by high MI CDUS. However, complete clinical tumor response after neoadjuvant chemotherapy was lower in high MI CDUS-treated (1/6) compared to untreated patients (4/5) and size reduction of high MI CDUS treated tumors tended to be delayed at early chemotherapy cycles. In mice with TNBC high MI CDUS decreased the perfused tumor vessel fraction (p < 0.01) without affecting carboplatin accumulation or distribution. Higher vascular immaturity and lower stromal stabilization may explain the stronger vascular response in murine than human tumors. Conclusion: High MI CDUS had no detectable effect on breast cancer vascularization in patients. In mice, the same high MI CDUS setting did not affect chemotherapy accumulation although strong effects on the tumor vasculature were detected histologically. Thus, sonopermeabilization in human breast cancers might not be effective using high MI CDUS protocols and future applications may rather focus on low MI approaches triggering microbubble oscillations instead of destruction. Furthermore, our results show that there are profound differences in the response of mouse and human tumor vasculature to high MI CDUS, which need to be further explored and considered in clinical translation.


Subject(s)
Breast Neoplasms/therapy , Neoadjuvant Therapy/methods , Ultrasonic Therapy/methods , Adult , Animals , Carboplatin/administration & dosage , Carboplatin/therapeutic use , Contrast Media/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Microbubbles , Middle Aged , Perfusion , Prospective Studies , Triple Negative Breast Neoplasms/drug therapy , Ultrasonography , Ultrasonography, Doppler/methods
4.
Mol Pharm ; 17(8): 2840-2848, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32589435

ABSTRACT

Microbubbles (MB) are routinely used ultrasound (US) contrast agents that have recently attracted increasing attention as stimuli-responsive drug delivery systems. To better understand MB-based drug delivery, we studied the role of drug hydrophobicity and molecular weight on MB loading, shelf-life stability, US properties, and drug release. Eight model drugs, varying in hydrophobicity and molecular weight, were loaded into the shell of poly(butyl cyanoacrylate) (PBCA) MB. In the case of drugs with progesterone as a common structural backbone (i.e., for corticosteroids), loading capacity and drug release correlated well with hydrophobicity and molecular weight. Conversely, when employing drugs with no structural similarity (i.e., four different fluorescent dyes), loading capacity and release did not correlate with hydrophobicity and molecular weight. All model drug-loaded MB formulations could be equally efficiently destroyed upon exposure to US. Together, these findings provide valuable insights on how the physicochemical properties of (model) drug molecules affect their loading and retention in and US-induced release from polymeric MB, thereby facilitating the development of drug-loaded MB formulations for US-triggered drug delivery.


Subject(s)
Enbucrilate/chemistry , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Microbubbles , Molecular Weight , Nanoparticles/chemistry
5.
J Control Release ; 259: 128-135, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28279799

ABSTRACT

Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug-loaded poly(n-butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US-mediated drug delivery. Molecular imaging of angiogenic tumor blood vessels and inflamed atherosclerotic endothelium is performed by modifying the surface of PBCA MB with peptides and antibodies recognizing E-selectin and VCAM-1. Stable and inertial cavitation of PBCA MB enables sonoporation and permeabilization of blood vessels in tumors and in the brain, which can be employed for direct and indirect drug delivery. Direct drug delivery is based on US-induced release of (model) drug molecules from the MB shell. Indirect drug delivery refers to US- and MB-mediated enhancement of extravasation and penetration of co-administered drugs and drug delivery systems. These findings are in line with recently reported pioneering proof-of-principle studies showing the usefulness of (phospholipid) MB for molecular US imaging and sonoporation-enhanced drug delivery in patients. They aim to exemplify the potential and the broad applicability of combining MB with US to improve disease diagnosis and therapy.


Subject(s)
Drug Delivery Systems , Enbucrilate/administration & dosage , Microbubbles , Animals , Antibodies/administration & dosage , Antibodies/chemistry , Biotin/administration & dosage , Biotin/chemistry , Brain/metabolism , Carotid Arteries/diagnostic imaging , Carotid Arteries/metabolism , Cell Line, Tumor , Dextrans/administration & dosage , Dextrans/chemistry , E-Selectin/immunology , Enbucrilate/chemistry , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Humans , Male , Mice, Nude , Molecular Imaging , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Rhodamines/administration & dosage , Rhodamines/chemistry , Streptavidin/administration & dosage , Streptavidin/chemistry , Ultrasonic Waves , Ultrasonography , Vascular Cell Adhesion Molecule-1/immunology , Vascular Endothelial Growth Factor Receptor-2/immunology
6.
Biomed Res Int ; 2016: 3758278, 2016.
Article in English | MEDLINE | ID: mdl-27699168

ABSTRACT

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 µm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures.


Subject(s)
Endothelium , Glycocalyx/physiology , Models, Immunological , Sepsis/physiopathology , Animals , Endothelium/physiology , Endothelium/physiopathology , Glucuronidase , Humans , Mice
7.
Int J Mol Sci ; 17(8)2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27527162

ABSTRACT

In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins' physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.


Subject(s)
Immunity, Innate , Multigene Family , Ribonuclease, Pancreatic/metabolism , Humans , Models, Biological
8.
Int J Mol Sci ; 17(3): 294, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26927088

ABSTRACT

Sepsis is the most common cause of death in intensive care units and associated with widespread activation of host innate immunity responses. Ribonucleases (RNases) are important components of the innate immune system, however the role of RNases in sepsis has not been investigated. We evaluated serum levels of RNase 1, 3 and 7 in 20 surgical sepsis patients (Sepsis), nine surgical patients (Surgery) and 10 healthy controls (Healthy). RNase 1 and 3 were elevated in Sepsis compared to Surgery (2.2- and 3.1-fold, respectively; both p < 0.0001) or compared to Healthy (3.0- and 15.5-fold, respectively; both p < 0.0001). RNase 1 showed a high predictive value for the development of more than two organ failures (AUC 0.82, p = 0.01). Patients with renal dysfunction revealed higher RNase 1 levels than without renal dysfunction (p = 0.03). RNase 1 and 3 were higher in respiratory failure than without respiratory failure (p < 0.0001 and p = 0.02, respectively). RNase 7 was not detected in Healthy patients and only in two patients of Surgery, however RNase 7 was detected in 10 of 20 Sepsis patients. RNase 7 was higher in renal or metabolic failure than without failure (p = 0.04 and p = 0.02, respectively). In conclusion, RNase 1, 3 and 7 are secreted into serum under conditions with tissue injury, such as major surgery or sepsis. Thus, RNases might serve as laboratory parameters to diagnose and monitor organ failure in sepsis.


Subject(s)
Autoantigens/blood , Eosinophil Cationic Protein/blood , Ribonuclease P/blood , Ribonucleases/blood , Sepsis/blood , Surgical Wound Infection/blood , Aged , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Sepsis/etiology , Surgical Wound Infection/complications
9.
PLoS One ; 10(11): e0143583, 2015.
Article in English | MEDLINE | ID: mdl-26600070

ABSTRACT

Heparanase is an endo-ß-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments) and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19-2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19-2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19-2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19-2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19-2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19-2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19-2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19-2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19-2.5 seems to be a potential anti-inflammatory agent in sepsis.


Subject(s)
Anti-Infective Agents/therapeutic use , Glucuronidase/metabolism , Heparitin Sulfate/metabolism , Peptides/therapeutic use , Sepsis/drug therapy , Sepsis/metabolism , Adult , Animals , Anti-Infective Agents/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Peptides/chemical synthesis , Sepsis/enzymology
10.
Adv Funct Mater ; 25(1): 36-43, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25729344

ABSTRACT

Efficient and safe drug delivery across the blood-brain barrier (BBB) remains to be one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, we show that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles within their shell, can be used to mediate and monitor BBB permeation. Upon exposure to transcranial ultrasound pulses, USPIO-MB are destroyed, resulting in acoustic forces inducing vessel permeability. At the same time, USPIO are released from the MB shell, they extravasate across the permeabilized BBB and they accumulate in extravascular brain tissue, thereby providing non-invasive R2*-based magnetic resonance imaging information on the extent of BBB opening. Quantitative changes in R2* relaxometry were in good agreement with 2D and 3D microscopy results on the extravascular deposition of the macromolecular model drug FITC-dextran into the brain. Such theranostic materials and methods are considered to be useful for mediating and monitoring drug delivery across the BBB, and for enabling safe and efficient treatment of CNS disorders.

11.
ACS Nano ; 7(1): 252-62, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23067565

ABSTRACT

Nanomedicines are sub-micrometer-sized carrier materials designed to improve the biodistribution of i.v. administered (chemo-) therapeutic agents. In recent years, ever more efforts in the nanomedicine field have employed optical imaging (OI) techniques to monitor biodistribution and target site accumulation. Thus far, however, the longitudinal assessment of nanomedicine biodistribution using OI has been impossible, due to limited light penetration (in the case of 2D fluorescence reflectance imaging; FRI) and to the inability to accurately allocate fluorescent signals to nonsuperficial organs (in the case of 3D fluorescence molecular tomography; FMT). Using a combination of high-resolution microcomputed tomography (µCT) and FMT, we have here set out to establish a hybrid imaging protocol for noninvasively visualizing and quantifying the accumulation of near-infrared fluorophore-labeled nanomedicines in tissues other than superficial tumors. To this end, HPMA-based polymeric drug carriers were labeled with Dy750, their biodistribution and tumor accumulation were analyzed using FMT, and the resulting data sets were fused with anatomical µCT data sets in which several different physiologically relevant organs were presegmented. The robustness of 3D organ segmentation was validated, and the results obtained using 3D CT-FMT were compared to those obtained upon standard 3D FMT and 2D FRI. Our findings convincingly demonstrate that combining anatomical µCT with molecular FMT facilitates the noninvasive assessment of nanomedicine biodistribution.


Subject(s)
Colonic Neoplasms/chemistry , Colonic Neoplasms/pathology , Molecular Imaging/methods , Nanocapsules/chemistry , Animals , Cell Line, Tumor , Materials Testing , Mice , Mice, Nude , Organ Specificity , Tissue Distribution
12.
J Control Release ; 163(1): 75-81, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22580225

ABSTRACT

Microbubbles (MB) are routinely used contrast agents for functional and molecular ultrasound (US) imaging. In addition, they have been attracting more and more attention for drug delivery purposes, enabling e.g. US-mediated drug delivery across biological barriers and US-induced triggered drug release from the MB shell. The vast majority of efforts in this regard have thus far focused on phospholipid-based soft-shell MB, which are suboptimal for stably incorporating large amounts of drug molecules because of their relatively thin shell. Using poly(butyl cyanoacrylate) (PBCA)-based hard-shell MB, we show here that both hydrophilic (Rhodamine-B) and hydrophobic (Coumarin-6) model drugs can be efficiently and stably entrapped within the ~50 nm shell of PBCA MB. In addition, we demonstrate that model drug loading does not negatively affect the acoustic properties of the MB, and that functionalizing the surface of fluorophore-loaded MB with anti-VEGFR2 antibodies enables image-guided and targeted model drug delivery to tumor blood vessels. Finally, we show both in vitro and in vivo that disintegrating VEGFR2-targeted MB with high-mechanical index US pulses leads to high levels of model drug release. Consequently, these findings indicate that polymer-based MB are highly suitable systems for image-guided, targeted and triggered drug delivery to tumors and tumor blood vessels.


Subject(s)
Cyanoacrylates/chemistry , Drug Delivery Systems , Microbubbles , Neoplasms/metabolism , Acoustics , Animals , Cell Line, Tumor , Coumarins/administration & dosage , Coumarins/chemistry , Enbucrilate , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Mice , Microscopy, Fluorescence , Rhodamines/administration & dosage , Rhodamines/chemistry , Thiazoles/administration & dosage , Thiazoles/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
Chem Commun (Camb) ; 48(42): 5142-4, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22516972

ABSTRACT

This research reports the versatile synthetic strategies for hybrid PBCA microbubbles as contrast agents and drug carriers loaded with fluorescent dyes and magnetic nanoparticles serving in vitro cell labelling and in vivo target imaging. These multifunctional probes therefore prove their potential biomedical applications in cancer diagnostics and treatment.


Subject(s)
Cyanoacrylates/chemistry , Fluorescent Dyes/chemistry , Microbubbles , Animals , Cell Line, Tumor , Contrast Media/chemistry , Drug Carriers/chemistry , Enbucrilate , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Mice , Mice, Nude , Microscopy, Confocal , Neoplasms/pathology , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
J Nucl Med ; 53(3): 345-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22393225

ABSTRACT

Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck, and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. Taking advantage of the excellent sensitivity and specificity of ultrasound for microbubble detection, molecular imaging can be realized by binding antibodies, peptides, and other targeting moieties to microbubble surfaces. Molecular microbubbles directed against various targets such as vascular endothelial growth factor receptor-2, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, selectins, and integrins were developed and were shown in preclinical studies to be able to selectively bind to tumor blood vessels and atherosclerotic plaques. Currently, the first microbubble formulations targeted to angiogenic vessels in prostate cancers are being evaluated clinically. However, microbubbles can be used for more than diagnosis: disintegrating microbubbles emit acoustic forces that are strong enough to induce thrombolysis, and they can also be used for facilitating drug and gene delivery across biologic barriers. This review on the use of microbubbles for ultrasound-based molecular imaging, therapy, and theranostics addresses innovative concepts and identifies areas in which clinical translation is foreseeable in the near future.


Subject(s)
Contrast Media , Microbubbles , Molecular Diagnostic Techniques , Thrombolytic Therapy/methods , Ultrasonics , Animals , Clinical Trials as Topic , Drug Delivery Systems , Genetic Therapy/methods , Humans , Vascular Endothelial Growth Factor Receptor-2/metabolism
15.
Drug Deliv Transl Res ; 2(1): 56-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-25786599

ABSTRACT

Microbubbles (MB) are routinely used as contrast agents for functional and molecular ultrasound (US) imaging. For molecular US imaging, MB are functionalized with antibodies or peptides, in order to visualize receptor expression by angiogenic or inflamed endothelium. In general, initial in vitro binding studies with targeted MB are performed using phase contrast microscopy. Difficulties in the identification of MB in standard phase contrast microscopy, however, generally result in high variability, high observer dependency, and low reproducibility. To overcome these shortcomings, we here describe a simple post-loading strategy for labeling polymer-based MB with fluorophores, and we show that the use of rhodamine-loaded MB in combination with fluorescence microscopy substantially reduces the variability and the observer dependency of in vitro binding studies. In addition, we demonstrate that rhodamine-loaded MB can also be used for in vivo and ex vivo experimental setups, e.g., for analyzing MB binding to inflamed carotids using two-photon laser scanning microscopy, and for validating the binding of VEGFR2-targeted MB to tumor endothelium. These findings demonstrate that fluorescently labeled MB substantially facilitate translational molecular US studies, and they suggest that a similar synthetic strategy can be exploited for preparing drug-loaded MB, to enable image-guided, targeted, and triggered drug delivery to tumors and to sites of inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...