Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Life Sci ; 351: 122761, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866216

ABSTRACT

Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.

2.
Hum Genet ; 142(7): 849-861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37186028

ABSTRACT

Neurofibromatosis type 1 results from loss-of-function NF1 pathogenic variants (PVs). Up to 30% of all NF1 PVs disrupt mRNA splicing, including deep intronic variants. Here, we retrospectively investigated the spectrum of NF1 deep intronic PVs in a cohort of 8,090 unrelated individuals from the University of Alabama at Birmingham (UAB) dataset with a molecularly confirmed neurofibromatosis type 1. All variants were identified through their effect on the NF1 transcript, followed by variant characterization at the DNA-level. A total of 68 distinct variants, which were ≥ 20 nucleotides away from the closest exon-intron junction, were identified in 2.5% unrelated individuals with NF1 (200/8,090). Nine different pathogenic splice variants, identified in 20 probands, led to exonization of different parts of intron 30 [23.2] or 31 [23a]. The two major NF1 transcript isoforms, distinguished by the absence (type I) or presence (type II) of the alternatively spliced cassette exon 31 [23a], are equally expressed in blood in control individuals without NF1 or NF1-affected individuals carrying their PV not in the introns flanking exon 31 [23a]. By fragment and cloning analysis we demonstrated that the exonization of intron 31 [23a] sequences due to deep intronic PV predominantly affects the NF1 isoform II. Seven additional (likely) pathogenic NF1 deep intronic variants not observed in the UAB dataset were found by classification of 36 variants identified by a literature search. Hence, the unique list of these 75 deep intronic (likely) PVs should be included in any comprehensive NF1 testing strategy.


Subject(s)
Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Introns/genetics , Retrospective Studies , Exons/genetics , Phenotype , Protein Isoforms/genetics
3.
J Transl Med ; 21(1): 270, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37081484

ABSTRACT

BACKGROUND: Visium Spatial Gene Expression (ST) is a method combining histological spatial information with transcriptomics profiles directly from tissue sections. The use of spatial information has made it possible to discover new modes of gene expression regulations. However, in the ST experiment, the nucleus size of cells may exceed the thickness of a tissue slice. This may, in turn, negatively affect comprehensive capturing the transcriptomics profile in a single slice, especially for tissues having large differences in the size of nuclei. METHODS: Here, we defined the effect of Consecutive Slices Data Integration (CSDI) on unveiling accurate spot clustering and deconvolution of spatial transcriptomic spots in human postmortem brains. By considering the histological information as reference, we assessed the improvement of unsupervised clustering and single nuclei RNA-seq and ST data integration before and after CSDI. RESULTS: Apart from the escalated number of defined clusters representing neuronal layers, the pattern of clusters in consecutive sections was concordant only after CSDI. Besides, the assigned cell labels to spots matches the histological pattern of tissue sections after CSDI. CONCLUSION: CSDI can be applied to investigate consecutive sections studied with ST in the human cerebral cortex, avoiding misinterpretation of spot clustering and annotation, increasing accuracy of cell recognition as well as improvement in uncovering the layers of grey matter in the human brain.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Transcriptome/genetics , RNA-Seq , Brain , Cell Communication
4.
Exp Mol Pathol ; 130: 104856, 2023 04.
Article in English | MEDLINE | ID: mdl-36791903

ABSTRACT

BACKGROUND: The mRNA splicing is regulated on multiple levels, resulting in the proper distribution of genes' transcripts in each cell and maintaining cell homeostasis. At the same time, the expression of alternative transcripts can change in response to underlying genetic variants, often missed during routine diagnostics. AIM: The main aim of this study was to define the frequency of aberrant splicing in BRCA1 and BRCA2 genes in blood RNA extracted from ovarian cancer patients who were previously found negative for the presence of pathogenic alterations in the 25 most commonly analysed ovarian cancer genes, including BRCA1 and BRCA2. MATERIAL AND METHODS: Frequency and spectrum of splicing alterations in BRCA1 and BRCA2 genes were analysed in blood RNA from 101 ovarian cancer patients and healthy controls (80 healthy women) using PCR followed by gel electrophoresis and Sanger sequencing. The expression of splicing events was examined using RT-qPCR. RESULTS: We did not identify any novel, potentially pathogenic splicing alterations. Nevertheless, we detected six naturally occurring transcripts, named BRCA1ΔE9-10, BRCA1ΔE11, BRCA1ΔE11q, and BRCA2ΔE3, BRCA2ΔE12 and BRCA2ΔE17-18 of which three (BRCA1ΔE11q, BRCA1ΔE11 and BRCA2ΔE3) were significantly higher expressed in the ovarian cancer cohort than in healthy controls (p ≤ 0.0001). CONCLUSIONS: This observation indicates that the upregulation of selected naturally occurring transcripts can be stimulated by non-genetic mechanisms and be a potential systemic response to disease progression and/or treatment. However, this hypothesis requires further examination.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Genes, BRCA2 , Alternative Splicing/genetics , Mutation , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Genetic Predisposition to Disease/genetics , RNA , Breast Neoplasms/genetics
5.
Sci Rep ; 12(1): 20854, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460769

ABSTRACT

Numeric sex chromosome abnormalities are commonly associated with an increased cancer risk. Here, we report a 14-year-old boy with a rare mosaic 45, X/48, XYYY karyotype presenting with subtle dysmorphic features and relative height deficiency, requiring growth hormone therapy. As only 12 postnatal cases have been described so far with very limited follow-up data, to assess the proband's long-term prognosis, including cancer risk, we performed high-throughput single-cell RNA sequencing (scRNA-seq) analysis. Although comprehensive cytogenetic analysis showed seemingly near perfect balance between 45, X and 48, XYYY cell populations, scRNA-seq revealed widespread differences in genotype distribution among immune cell fractions, specifically in monocytes, B- and T-cells. These results were confirmed at DNA level by digital-droplet PCR on flow-sorted immune cell types. Furthermore, deregulation of predominantly autosomal genes was observed, including TCL1A overexpression in 45, X B-lymphocytes and other known genes associated with hematological malignancies. Together with the standard hematological results, showing increased fractions of monocytes and CD4+/CD8+T lymphocytes ratio, long-term personalized hemato-oncological surveillance was recommended in the reported patient.


Subject(s)
Neoplasms , Male , Humans , Adolescent , Karyotyping , Karyotype , Risk Assessment , Sequence Analysis, RNA
6.
NPJ Breast Cancer ; 8(1): 76, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768433

ABSTRACT

The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10-2- 5.2 × 10-1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10-2-10-4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.

7.
Hum Mutat ; 43(1): 74-84, 2022 01.
Article in English | MEDLINE | ID: mdl-34747535

ABSTRACT

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.


Subject(s)
Neurilemmoma , Neurofibromatoses , Chromosomes , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/genetics , SMARCB1 Protein/genetics , Transcription Factors/genetics
8.
Hum Mutat ; 41(1): 299-315, 2020 01.
Article in English | MEDLINE | ID: mdl-31595648

ABSTRACT

We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.


Subject(s)
Alleles , Genetic Association Studies , Genetic Predisposition to Disease , Mutation, Missense , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Amino Acid Substitution , Cross-Sectional Studies , Heterozygote , Humans , Phenotype
9.
Folia Neuropathol ; 57(3): 227-238, 2019.
Article in English | MEDLINE | ID: mdl-31588709

ABSTRACT

INTRODUCTION: Germ cell tumours (GCTs) in the children comprise a group of tumours that originate from primordial germ cells but their pathogenesis is not clear. Intracranial GCTs represent a special subset of these paediatric neoplasms. Hedgehog (Hh) pathway gene status in GCTs is generally unexplored, while Hh signalling is involved in germ cell biology. MATERIAL AND METHODS: Comparative genomic profiling analysis with a microarray-comparative genomic hybridization (CGH) + single nucleotide polymorphism (SNP) technique in a group of intracranial paediatric GCTs was performed. The analysis included evaluation of genes being ligands, receptors, regulators, effectors, and targets of Hh signalling. RESULTS: Chromosomal aberrations were found in 62% of examined tumours, showing their heterogeneity. A number of private genomic imbalances were observed, but only a few recurrent ones. The most common numerical changes were trisomies 19, 21 and monosomies 13, 18 while the most frequent structural aberration was gain/amplification of the chromosome 12p. The analysis of the gene status of Hh network elements showed imbalances in a proportion of tumours. PTCH1, GLI2, IHH and ZIC2 gene aberrations occurred most frequently. Moreover, six tumours had various copy gains or losses of several other genes involved in the pathway, including HHIP, GLI1, GLI3, DHH, SHH, SMO, PTCH2, and several genes from the WNT group. Interestingly, four cases showed losses of pathway repressors, with parallel gains of activators in two of them. Correlations with patho-clinical tumour features were not found, most probably due to the heterogeneity of the examined limited group. CONCLUSIONS: Our results show few genomic alterations related to the Hh signalling pathway genes in paediatric intracranial GCTs. Further analysis of Hedgehog pathway alterations can potentially disclose its biological significance and define new prognostic factors and/or therapeutic targets for high-risk patients.


Subject(s)
Brain Neoplasms/genetics , Hedgehog Proteins/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Brain Neoplasms/metabolism , Child , Female , Hedgehog Proteins/metabolism , Humans , Male , Neoplasms, Germ Cell and Embryonal/metabolism , Signal Transduction/physiology
10.
PLoS One ; 14(8): e0221764, 2019.
Article in English | MEDLINE | ID: mdl-31465488

ABSTRACT

In transcriptomics, micro RNAs (miRNAs) has gained much interest especially as potential disease indicators. However, apart from holding a great promise related to their clinical application, a lot of inconsistent results have been published. Our aim was to compare the miRNA expression levels in ovarian cancer and healthy subjects using the Bayesian multilevel model and to assess their potential usefulness in diagnosis. We have analyzed a case-control observational data on expression profiling of 49 preselected miRNA-based ovarian cancer indicators in 119 controls and 59 patients. A Bayesian multilevel model was used to characterize the effect of disease on miRNA levels controlling for differences in age and body weight. The difference between the miRNA level and health status of the patient on the scale of the data variability were discussed in the context of their potential usefulness in diagnosis. Additionally, the cross-validated area under the ROC curve (AUC) was used to assess the expected out-of-sample discrimination index of a different sets of miRNAs. The proposed model allowed us to describe the set of miRNA levels in patients and controls. Three highly correlated miRNAs: miR-101-3p, miR-142-5p, miR-148a-3p rank the highest with almost identical effect sizes that ranges from 0.45 to 1.0. For those miRNAs the credible interval for AUC ranged from 0.63 to 0.67 indicating their limited discrimination potential. A little benefit in adding information from other miRNAs was observed. There were several miRNAs in the dataset (miR-604, hsa-miR-221-5p) for which inferences were uncertain. For those miRNAs more experimental effort is needed to fully assess their effect in the context of new hits discovery and usefulness as disease indicators. The proposed multilevel Bayesian model can be used to characterize the panel of miRNA profile and to assess the difference in expression levels between healthy and cancer individuals.


Subject(s)
MicroRNAs/genetics , Multilevel Analysis , Ovarian Neoplasms/genetics , Bayes Theorem , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/metabolism , Middle Aged , Models, Biological , Ovarian Neoplasms/diagnosis
12.
Genet Med ; 21(4): 867-876, 2019 04.
Article in English | MEDLINE | ID: mdl-30190611

ABSTRACT

PURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.


Subject(s)
Learning Disabilities/genetics , Neurofibroma, Plexiform/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Learning Disabilities/physiopathology , Male , Mutation, Missense/genetics , Neurofibroma, Plexiform/physiopathology , Neurofibromatosis 1/pathology , Sequence Deletion , Young Adult
13.
Cancers (Basel) ; 10(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441849

ABSTRACT

Constitutional loss-of-function pathogenic variants in the tumor suppressor genes BRCA1 and BRCA2 are widely associated with an elevated risk of ovarian cancer (OC). As only ~15% of OC individuals carry the BRCA1/2 pathogenic variants, the identification of other potential OC-susceptibility genes is of great clinical importance. Here, we established the prevalence and spectrum of the germline pathogenic variants in the BRCA1/2 and 23 other cancer-related genes in a large Polish population of 333 unselected OC cases. Approximately 21% of cases (71/333) carried the BRCA1/2 pathogenic or likely pathogenic variants, with c.5266dup (p.Gln1756Profs*74) and c.3700_3704del (p.Val1234Glnfs*8) being the most prevalent. Additionally, ~6% of women (20/333) were carriers of the pathogenic or likely pathogenic variants in other cancer-related genes, with NBN and CHEK2 reported as the most frequently mutated, accounting for 1.8% (6/333) and 1.2% (4/333) of cases, respectively. We also found ten pathogenic or likely pathogenic variants in other genes: 1/333 in APC, 1/333 in ATM, 2/333 in BLM, 1/333 in BRIP1, 1/333 in MRE11A, 2/333 in PALB2, 1/333 in RAD50, and 1/333 in RAD51C, accounting for 50% of all detected variants in moderate- and low-penetrant genes. Our findings confirmed the presence of the additional OC-associated genes in the Polish population that may improve the personalized risk assessment of these individuals.

14.
Biomed Res Int ; 2018: 4596812, 2018.
Article in English | MEDLINE | ID: mdl-29805974

ABSTRACT

This study presents a unique series of malignant supratentorial gliomas in children previously cured from non-CNS primary cancer. On neuroimaging these tumors were not specific, so the patients were suspected of cerebral recurrence of their primary neoplasm: leukemia in four children and sarcoma in one child. Histologically, the group contained four glioblastomas and one anaplastic astrocytoma. Three patients underwent neurosurgical resection, while the other two underwent stereotactic diagnostic biopsy only. Despite combined oncological treatment, four children died during 20 months, and only one glioblastoma patient continued to live for another twelve years. Microscopically, the neoplasms consisted of small cells with some morphologic features of astrocytic lineage, having scanty or prominent processes. Microvascular proliferation and focal or diffuse necrosis were encountered in four cases. The GFAP reactivity in neoplastic cells was low or nil, together with the expression of Olig2, vimentin, and nestin. In two cases a subpopulation of synaptophysin-positive cells was present. Molecular immunohistochemical profiling revealed the expression of phosphorylated forms of PI3Kp110 and AKT, in parallel to a strong PTEN and p53 positivity. The tumors were of IDH1R132H-wild type and immunoreactive for ATRX, HER3, and EGFR. Secondary malignant gliomas in pediatric cancer survivors pose a diagnostic challenge. The present study shows that these tumors are of IDH wild type, PI3K/AKT-activated, having no PTEN and EGFR mutations. Therefore, the biopsy of brain tumors in such patients is crucial both for accurate diagnosis and material preservation for molecular typing.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Neoplasms, Second Primary/pathology , Brain/diagnostic imaging , Brain/pathology , Brain Neoplasms/diagnostic imaging , Cancer Survivors , Child , Child, Preschool , Cohort Studies , Glioma/diagnostic imaging , Humans , Immunohistochemistry , Neoplasms, Second Primary/diagnostic imaging
15.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29290338

ABSTRACT

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Subject(s)
Codon/genetics , Genetic Association Studies , Mutation, Missense/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Amino Acid Sequence , Child , Cohort Studies , Computer Simulation , Demography , Female , Heterozygote , Humans , Male , Neurofibromin 1/chemistry , Phenotype , Young Adult
16.
Oncotarget ; 8(60): 101325-101332, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29254167

ABSTRACT

Approximately 25% of patients with ovarian cancer harbor a pathogenic BRCA1/2 mutation that has been associated with favorable responses for targeted therapy with poly (ADP-ribose) polymerase 1 (PARP1) inhibitors compared to wild-type individuals. The overall frequency of germline and somatic BRCA1/2 alterations is estimated at 13-15% and 3-10%, respectively. A high incidence of BRCA1/2 somatic variants significantly increases the number of patients eligible for treatment with PARP1 inhibitors. Here, we assessed circulating tumor DNA (ctDNA) from 121 patients with ovarian cancer for BRCA1/2 mutational analysis by next generation sequencing. A total number of patients carrying the pathogenic BRCA1/2 variants was 30/121 (24.8%), including 22 and 7 individuals with exclusively germline or somatic mutations, respectively and one patient with variants of both origin. Among this cohort, more than one known pathogenic BRCA1 and/or BRCA2 alterations were identified in 7/30 individuals. The most recurrent mutations were detected in the BRCA1 gene: c.5266dupC (p.Gln1756Profs*74) with the frequency of ~18%, followed by c.3756_3759del (p.Ser1253Argfs*10) and c.181T>G (p.Cys61Gly). In seven (5.8%) patients, coincidence of two or more BRCA1/2 pathogenic mutations have been identified. Our results clearly demonstrate that the detection of both germline and somatic BRCA1/2 mutations in ctDNA from ovarian cancer patients is feasible and may be a valuable complementary tool for identification of somatic alterations when the standard diagnostic procedures are insufficient. Finally, ctDNA can potentially allow to monitor the efficacy of PARP1 inhibitors and to detect a secondary reversion BRCA1/2 mutations.

17.
Mol Cytogenet ; 10: 7, 2017.
Article in English | MEDLINE | ID: mdl-28331547

ABSTRACT

BACKGROUND: Rarity and heterogeneity of liposarcomas (LPS) make their diagnosis difficult even for sarcoma-experts pathologists. The molecular mechanism underlying the development and progression of liposarcomas (LPS) remains only partially known. In order to identify and compare the genomic profiles, we analyzed array-based comparative genomic hybridization (array-CGH) profiles of 66 liposarcomas, including well-differentiated (WDLPS), dedifferentiated (DDLPS) and myxoid (MLPS) subtypes. RESULTS: Copy number aberrations (CNAs) were identified in 98% of WDLPS and DDLPS and in 95% of MLPS cases. The minimal common region of amplification at 12q14.1q21.1 was observed in 96% of WDLPS and DDLPS cases. Four regions of CNAs, including losses of chromosome 6, 11 and 13 and gains of chromosome 14 were classified as recurrent in DDLPS; at least one was identified in 74% of DDLPS tumors. The DDLPS-associated losses were much more common in tumors with increased genomic complexity. In MLPS, the most frequent CNAs were losses of chromosome 6 (40%) and gains of chromosome 1 (30%), with the minimal overlapping regions 6q14.1q22.31 and 1q25.1q32.2, respectively. CONCLUSIONS: Our findings show that the application of array-CGH allows to delineate clearly the genomic profiles of WDLPS, DDLPS and MLPS that reflect biological differences between these tumors. Although CNAs varied widely, the subtypes of tumors have characteristic genomic profiles that could facilitate the differential diagnosis of LPS subtypes, especially between WDLPS and DDLPS.

18.
Contemp Oncol (Pozn) ; 21(4): 279-284, 2017.
Article in English | MEDLINE | ID: mdl-29416433

ABSTRACT

AIM OF THE STUDY: Examination of copy number changes in a group of intracranial germ cell tumors (GCTs) with particular focus on putative aberrations of the main genes coding SHh pathway proteins. MATERIAL AND METHODS: The study was performed on DNA isolated from fresh-frozen tumor tissue samples from eight GCTs, including six intracranial GCTs. The intracranial group consisted of three germinomas, two mature teratomas and one mixed germ cell tumor. Comparative genomic profiling analysis was carried out using microarray-CGH method (Cytosure ISCA UPD 4×180k, OGT). The results were analyzed with Feature Extraction (Agilent Technologies) and Nexus Copy Number (BioDiscovery) softwares. RESULTS AND CONCLUSIONS: Chromosomal aberrations were found in two intracranial germinomas. These tumors were characterized by complex genomic profiles encompassing chromosomes 7, 8, 9, 10, 11, 12, 16, 17 and 19. Common findings were gain at 12p13.33p11.1 of 35 Mbp and gain at 17q11.1q25.3 of 55 Mbp. In one tumor, also SHh (7q36.3), SMO (7q32.1) and GLI3 (7p14.1) copy gains occurred together with 9q21.11q34.3 loss, including PTCH1, all being elements of SHh signaling pathway. Moreover, both tumors showed various copy gain of genes being ligands, regulators, receptors or target genes of SHh (MTSS1; PRKACA and FKBP8) as well as gain of genes of SHh coopting WNT pathway (WNT3, WNT5B, WNT9B in both tumors; WNT16, WNT2 in pineal lesion). Further studies on larger group are needed to characterize SHh-related gene alterations in intracranial GCTs and for searching genotype-phenotype relations.

19.
J Appl Genet ; 58(1): 93-98, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27629806

ABSTRACT

Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ∼40 % phenotypic 22q11.2 deletion subjects.


Subject(s)
DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Duplication/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 6/genetics , Comparative Genomic Hybridization , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Facies , Female , Hearing Loss/diagnosis , Hearing Loss/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Hypertelorism/diagnosis , Hypertelorism/genetics , In Situ Hybridization, Fluorescence , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Karyotyping , Male , Neurofibromatoses/diagnosis , Neurofibromatoses/genetics
20.
Arch Med Sci ; 12(4): 778-84, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27478459

ABSTRACT

INTRODUCTION: Markers of exhaled breath condensate (EBC) correlate with lung function impairment, airway remodeling and different aspects of the disease such as exercise-induced bronchoconstriction (EIB). Aim of the study was to determine the cytokine profile in EBC of children with asthma after an exercise treadmill challenge in order to obtain clinically useful information about mechanisms of EIB; also, to assess correlations between cytokine concentrations in EBC and clinical characteristics of the patients. MATERIAL AND METHODS: The study population consisted of 25 randomly selected children, aged 8 to 19 years, with asthma and EIB symptoms despite the use of control medications. Patients on the day of the study visit underwent fractional exhaled nitric oxide measurement (FeNO) and baseline spirometry, performed an exercise treadmill challenge (ETC), and EBC samples were obtained at the end of the ETC. RESULTS: In asthmatic children with positive ETC, monocyte hemotactic protein-1 (MCP-1) and IL-16 adjusted to pre-EBC forced expiratory volume in 1 s (FEV1) were significantly higher compared to children with negative ETC (p = 0.022 and p = 0.017 respectively). After adjustment to pre-EBC FEV1 other cytokines (IL-4, IL-5, IL-6, IL-8, MIG, TNF-α) were not related to post-exercise changes in FEV1. CONCLUSIONS: We observed a specific inflammatory profile in the airways of asthmatic children with bronchoconstriction induced by exercise. The concentration of cytokines in EBC depended on the post-exercise decrease in FEV1, which was measured by the area under the curve (AUC). MCP-1 and IL-16, adjusted to pre-EBC FEV1, were significantly higher in children with a positive exercise challenge compared to those with a negative one.

SELECTION OF CITATIONS
SEARCH DETAIL
...