Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 74(2): 322-331, 2017 08.
Article in English | MEDLINE | ID: mdl-28243679

ABSTRACT

Despite the importance of litter decomposition under snow cover in boreal forests and tundra, very little is known regarding the characteristics and functions of litter-decomposing fungi adapted to the cold climate. We investigated the decomposition of oak leaves in a heavy snowfall forest region of Japan. The rate of litter weight loss reached 26.5% during the snow cover period for 7 months and accounted for 64.6% of the annual loss (41.1%). Although no statistically significant lignin loss was detected, decolourization portions of oak leaf litter, which was attributable to the activities of ligninolytic fungi, were observed during snow cover period. This suggests that fungi involved in litter decomposition can produce extracellular enzymes to degrade lignin that remain active at 0 °C. Fungi were isolated from oak leaves collected from the forest floor under the snow layer. One hundred and sixty-six strains were isolated and classified into 33 operational taxonomic units (OTUs) based on culture characteristics and nuclear rDNA internal transcribed spacer (ITS) region sequences. To test the ability to degrade lignin, the production of extracellular phenoloxidases by isolates was quantified at 0 °C. Ten OTUs (9 Ascomycota and 1 Basidiomycota) of fungi exhibited mycelial growth and ligninolytic activity. These results suggested that some litter-decomposing fungi that had the potential to degrade lignin at 0 °C significantly contribute to litter decomposition under snow cover.


Subject(s)
Fungi/metabolism , Lignin/metabolism , Plant Leaves/microbiology , Quercus/microbiology , Snow , Forests , Fungi/classification , Japan , Trees
2.
Bioresour Technol ; 232: 126-132, 2017 May.
Article in English | MEDLINE | ID: mdl-28214699

ABSTRACT

Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions.


Subject(s)
Biofuels/analysis , Biotechnology/methods , Carbohydrate Metabolism , Ethanol/metabolism , Fermentation , Lignin/metabolism , Batch Cell Culture Techniques , Bioreactors , Cellulase/metabolism , Saccharomyces cerevisiae/metabolism , Temperature
3.
J Agric Food Chem ; 63(18): 4613-20, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25775127

ABSTRACT

To elucidate the influence of wood polysaccharide components on lignin formation in vitro, models for polysaccharide matrix in wood secondary cell wall were fabricated from two types of bacterial cellulosic films, flat film (FBC) and honeycomb-patterned film (HPBC), as basic frameworks by depositing xylan onto the films. An endwise type of dehydrogenative polymerization, "Zutropfverfahren", of coniferyl alcohol was attempted in the films with/without xylan. The resultant dehydrogenation polymer (DHP) was generated inside and outside xylan-deposited films, whereas DHP was deposited only outside the films without xylan. The amount of the generated DHP in the xylan-deposited films was larger than that in the films without xylan. The frequency of 8-O-4' interunitary linkage in DHP was also increased by the xylan deposition. These results suggest that xylan acts as a scaffold for DHP deposition in polysaccharides matrix and as a structure regulator for the formation of the 8-O-4' linkage. In addition, mechanical properties, i.e., tensile strength and modulus of elasticity (MOE), of both cellulosic films were found to be augmented by the deposition of xylan and DHP. Especially, DHP deposition remarkably enhanced MOE. Such effects of xylan on DHP formation and augmentation of mechanical strength were clearly observed for HPBC, revealing that HPBC is a promising framework model to investigate wood cell wall formation in vitro.


Subject(s)
Lignin/chemistry , Phenols/chemistry , Polymers/chemistry , Xylans/chemistry , Elasticity , Molecular Structure , Polymerization , Polymers/chemical synthesis , Tensile Strength
4.
Bioresour Technol ; 173: 104-109, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25291627

ABSTRACT

Amphipathic lignin derivatives (A-LDs) were already demonstrated to improve enzymatic saccharification of lignocellulose. Based on this knowledge, two kinds of A-LDs prepared from black liquor of soda pulping of Japanese cedar were applied to a fed-batch simultaneous saccharification and fermentation (SSF) process for unbleached soda pulp of Japanese cedar to produce bioethanol. Both lignin derivatives slightly accelerated yeast fermentation of glucose but not inhibited it. In addition, ethanol yields based on the theoretical maximum ethanol production in the fed-batch SSF process was increased from 49% without A-LDs to 64% in the presence of A-LDs.


Subject(s)
Bioreactors/microbiology , Ethanol/metabolism , Lignin/chemistry , Refuse Disposal/methods , Saccharomyces cerevisiae/metabolism , Wood/chemistry , Wood/microbiology , Biodegradation, Environmental , Carbohydrate Metabolism/physiology , Cellulase/chemistry , Ethanol/isolation & purification , Hydrophobic and Hydrophilic Interactions
5.
Biomacromolecules ; 13(3): 867-72, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22339317

ABSTRACT

Several lignin model polymers and their derivatives comprised exclusively of ß-O-4 or 8-O-4' interunitary linkages were synthesized to better understand the relation between the thermal mobility of lignin, in particular, thermal fusibility and its chemical structure; an area of critical importance with respect to the biorefining of woody biomass and the future forest products industry. The phenylethane (C6-C2)-type lignin model (polymer 1) exhibited thermal fusibility, transforming into the rubbery/liquid phase upon exposure to increasing temperature, whereas the phenylpropane (C6-C3)-type model (polymer 2) did not, forming a char at higher temperature. However, modifying the Cγ or 9-carbon in polymer 2 to the corresponding ethyl ester or acetate derivative imparted thermal fusibility into this previously infusible polymer. FT-IR analyses confirmed differences in hydrogen bonding between the two model lignins. Both polymers had weak intramolecular hydrogen bonds, but polymer 2 exhibited stronger intermolecular hydrogen bonding involving the Cγ-hydroxyl group. This intermolecular interaction is responsible for suppressing the thermal mobility of the C6-C3-type model, resulting in the observed infusibility and charring at high temperatures. In fact, the Cγ-hydroxyl group and the corresponding intermolecular hydrogen bonding interactions likely play a dominant role in the infusibility of most native lignins.


Subject(s)
Lignin/chemistry , Polymers/chemistry , Wood/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...