Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler Relat Disord ; 83: 105413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215633

ABSTRACT

BACKGROUND: Multiple sclerosis cortical lesions are areas of demyelination and neuroaxonal loss. Retinal layer thickness, measured with optical coherence tomography (OCT), is an emerging biomarker of neuroaxonal loss. Studies have reported correlations between cortical lesions and retinal layer thinning in established multiple sclerosis, suggesting a shared pathophysiological process. Here, we assessed the correlation between cortical lesions and OCT metrics at the onset of multiple sclerosis, examining, for the first time, associations with physical or cognitive disability. OBJECTIVE: To examine the relationship between cortical lesions, optic nerve and retinal layer thicknesses, and physical and cognitive disability at the first demyelinating event. METHODS: Thirty-nine patients and 22 controls underwent 3T-MRI, optical coherence tomography, and clinical tests. We identified cortical lesions on phase-sensitive inversion recovery sequences, including occipital cortex lesions. We measured the estimated total intracranial volume and the white matter lesion volume. OCT metrics included peripapillary retinal nerve fibre layer (pRNFL), ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL) thicknesses. RESULTS: Higher total cortical and leukocortical lesion volumes correlated with thinner pRNFL (B = -0.0005, 95 % CI -0.0008 to -0.0001, p = 0.01; B = -0.0005, 95 % CI -0.0008 to -0.0001, p = 0.01, respectively). Leukocortical lesion number correlated with colour vision deficits (B = 0.58, 95 %CI 0.039 to 1,11, p = 0.036). Thinner GCIPL correlated with a higher Expanded Disability Status Scale (B = -0.06, 95 % CI -1.1 to -0.008, p = 0.026). MS diagnosis (n = 18) correlated with higher cortical and leukocortical lesion numbers (p = 0.004 and p = 0.003), thinner GCIPL (p = 0.029) and INL (p = 0.041). CONCLUSION: The association between cortical lesions and axonal damage in the optic nerve reinforces the role of neurodegenerative processes in MS pathogenesis at onset.


Subject(s)
Multiple Sclerosis , Retinal Degeneration , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Retinal Ganglion Cells/pathology , Retina/pathology , Optic Nerve/pathology , Retinal Degeneration/etiology , Tomography, Optical Coherence
2.
Front Neurol ; 13: 1090133, 2022.
Article in English | MEDLINE | ID: mdl-36761920

ABSTRACT

The immunoprotective role of pregnancy in multiple sclerosis (MS) has been known for decades. Conversely, there has been rich debate on the topic of breastfeeding and disease activity in MS. In clinical practice, women are often offered to restart their disease-modifying drug (DMD) soon after delivery to maintain their relapse risk protection. Limited available information about peri-partum DMD safety can discourage women to choose breastfeeding, despite the World Health Organization's recommendation to breastfeed children for the first 6 months of life exclusively. New evidence is emerging about the protective role of exclusive breastfeeding on relapse rate. Research studies shed light on the hormonal and immunological mechanisms driving the risk of relapses during pregnancy and postpartum. Finally, case reports, real-world data, and clinical trials are increasing our knowledge of the safety of DMDs for the fetus and infant. While some DMDs must be avoided, others may be considered in highly active pregnant or lactating women with MS. This mini-review conveys recent evidence regarding the protective role of exclusive breastfeeding in MS and offers clinicians practical considerations for a patient-tailored approach.

3.
Pediatr Res ; 90(6): 1161-1170, 2021 12.
Article in English | MEDLINE | ID: mdl-33654279

ABSTRACT

BACKGROUND: Neonatal stroke affects 1 in 2800 live births and is a major cause of neurological injury. The Sonic hedgehog (Shh) signaling pathway is critical for central nervous system (CNS) development and has neuroprotective and reparative effects in different CNS injury models. Previous studies have demonstrated beneficial effects of small molecule Shh-Smoothened agonist (SAG) against neonatal cerebellar injury and it improves Down syndrome-related brain structural deficits in mice. Here we investigated SAG neuroprotection in rat models of neonatal ischemia-reperfusion (stroke) and adult focal white matter injury. METHODS: We used transient middle cerebral artery occlusion at P10 and ethidium bromide (EB) injection in adult rats to induce damage. Following surgery and SAG or vehicle treatment, we analyzed tissue loss, cell proliferation and fate, and behavioral outcome. RESULTS: We report that a single dose of SAG administered following neonatal stroke preserved brain volume, reduced gliosis, enhanced oligodendrocyte progenitor cell (OPC) and EC proliferation, and resulted in long-term cognitive improvement. Single-dose SAG also promoted proliferation of OPCs following focal demyelination in the adult rat. CONCLUSIONS: These findings indicate benefit of one-time SAG treatment post insult in reducing brain injury and improving behavioral outcome after experimental neonatal stroke. IMPACT: A one-time dose of small molecule Sonic hedgehog agonist protected against neonatal stroke and improved long-term behavioral outcomes in a rat model. This study extends the use of Sonic hedgehog in treating developing brain injury, previously shown in animal models of Down syndrome and cerebellar injury. Sonic hedgehog agonist is one of the most promising therapies in treating neonatal stroke thanks to its safety profile and low dosage.


Subject(s)
Hedgehog Proteins/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Small Molecule Libraries/therapeutic use , Stroke/prevention & control , Animals , Behavior, Animal , Cell Proliferation , Disease Models, Animal , Humans , Infant, Newborn , Infarction, Middle Cerebral Artery/complications , Mice , Rats , Rats, Sprague-Dawley , Stroke/etiology
5.
Expert Rev Neurother ; 18(2): 111-123, 2018 02.
Article in English | MEDLINE | ID: mdl-29285954

ABSTRACT

INTRODUCTION: Amongst strategies to repair the brain, myelin repair offers genuine cause for optimism. Myelin, which sheaths most axons in the central nervous system (CNS), is vital for normal neurological function, as demonstrated by the functional deficits that accrue when it is absent in a range of debilitating myelin diseases. Following demyelination, post-mortem and imaging studies have shown that extensive regeneration of myelin is possible in the human brain. Over recent decades preclinical research has given us a strong understanding of the biology of myelin regeneration, opening up several exciting therapeutic opportunities that are on the cusp of clinical translation. Areas covered: This review discusses diseases that compromise the function of myelin, the endogenous capacity of the CNS to regenerate myelin, and why this sometimes fails. We then outline the extensive progress that has been made towards therapies that promote the regeneration of myelin. Expert commentary: Finally, a commentary on the first examples of these therapies to reach human patients and the evidence base that supports them, giving our opinion on where attention should be focused going forward is provided.


Subject(s)
Brain/physiology , Brain/physiopathology , Demyelinating Diseases/physiopathology , Myelin Sheath/physiology , Nerve Regeneration/physiology , Animals , Demyelinating Diseases/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...