Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24343, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298671

ABSTRACT

This work deals with the synthesis, structural characterization and applications of N-halamine glycinate functionalized silica-mesoporous silica coated ZnO-NPs/AC composite for water disinfection. Several nanocomposite materials were obtained: ZnO-NPs/AC, ZnO-NPs/AC@SiO2, ZnO-NPs/AC@SiO2@mSiO2, ZnO-NPs@SiO2@mSiO2-Gly and ZnO-NPs@SiO2@mSiO2-N-halamine-Gly. These nanocomposite materials were fully characterized via different physiochemical techniques including: FTIR, TGA, XPS, XRD, SEM, TEM and BET. XRD indicated a predominance of crystalline pattern of ZnO-NPs impregnated into activated carbon (AC) and their silica and m-mesoporous silica coating precursors. The FTIR spectra confirmed an immense combination between ZnO-NPs and AC of ZnO-NPs/AC nanocomposite as well as its interactions with coated silica precursors. SEM, TEM images illustrated that the fabricated ZnO-NPs/AC nanocomposites are well coated with silica-mesoporous silica functionalized N-halamine. The distinctive surface area has decreased from 800 m2/g for pristine AC to 772 m2/g for ZnO-NPs/AC and to 282 m2/g for ZnO-NPs/AC@SiO2 and to 139 m2/g for ZnO-NPs/AC@SiO2@mSiO2 and to 15.4 m2/g for ZnO-NPs@SiO2@mSiO2-N-Gly. All those nanocomposites showed good efficacy against all four bacterial species, with higher inhibition zones for the 2 g-positive bacteria than that of the 2 g-negative ones. The ZnO@SiO2@mSiO2-N-halamine-Gly exhibited the high zone inhibition against all tested bacteria except for E. Coli.

2.
Sci Rep ; 10(1): 8806, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32461610

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 5410, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214118

ABSTRACT

ZnO-NPs coated cotton or starched cotton fibers were successfully prepared via ultrasound irradiation. Different concentrations of soluble corn starch (1-3 starch wt.%) were used to stabilize ZnO-NPs onto the surface of cotton fabrics as entrapped species. The use of none-toxic biocompatible starch has improved the adhesion properties of the cotton fibers towards ZnO-NPs. This also enhanced the durability of ZnO-NPs onto the cotton fabrics and decreased their leaching from the surface of cotton fabrics. When 3 starch wt.% solution was used, deposition of ZnO-NP increased by 53% after 10 washing cycles. The antibacterial activity against Staphylococcus aureus and Escherichia coli increased by 50 and 21.5%, respectively. Functionalization of ZnO coated cotton with silver nanoparticles (Ag-NPs) and curcumin results in formation of ZnO-Ag/cotton and Zn(II) curcumin/cotton composites. The functionalized nanocomposites ZnO-Ag coated cotton material showed a synergistic antimicrobial behavior than that of individual ZnO/cotton material. The Zn(II) curcumin complex coated cotton showed higher antibacterial activities against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria than that of the ZnO/cotton material.

SELECTION OF CITATIONS
SEARCH DETAIL
...