Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(8): 104813, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982785

ABSTRACT

Species differences in brain and blood-brain barrier (BBB) biology hamper the translation of findings from animal models to humans, impeding the development of therapeutics for brain diseases. Here, we present a human organotypic microphysiological system (MPS) that includes endothelial-like cells, pericytes, glia, and cortical neurons and maintains BBB permeability at in vivo relevant levels. This human Brain-Chip engineered to recapitulate critical aspects of the complex interactions that mediate neuroinflammation and demonstrates significant improvements in clinical mimicry compared to previously reported similar MPS. In comparison to Transwell culture, the transcriptomic profiling of the Brain-Chip displayed significantly advanced similarity to the human adult cortex and enrichment in key neurobiological pathways. Exposure to TNF-α recreated the anticipated inflammatory environment shown by glia activation, increased release of proinflammatory cytokines, and compromised barrier permeability. We report the development of a robust brain MPS for mechanistic understanding of cell-cell interactions and BBB function during neuroinflammation.

2.
Nat Commun ; 12(1): 5907, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625559

ABSTRACT

Parkinson's disease and related synucleinopathies are characterized by the abnormal accumulation of alpha-synuclein aggregates, loss of dopaminergic neurons, and gliosis of the substantia nigra. Although clinical evidence and in vitro studies indicate disruption of the Blood-Brain Barrier in Parkinson's disease, the mechanisms mediating the endothelial dysfunction is not well understood. Here we leveraged the Organs-on-Chips technology to develop a human Brain-Chip representative of the substantia nigra area of the brain containing dopaminergic neurons, astrocytes, microglia, pericytes, and microvascular brain endothelial cells, cultured under fluid flow. Our αSyn fibril-induced model was capable of reproducing several key aspects of Parkinson's disease, including accumulation of phosphorylated αSyn (pSer129-αSyn), mitochondrial impairment, neuroinflammation, and compromised barrier function. This model may enable research into the dynamics of cell-cell interactions in human synucleinopathies and serve as a testing platform for target identification and validation of novel therapeutics.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Astrocytes/metabolism , Brain/diagnostic imaging , Brain/pathology , Dopaminergic Neurons/metabolism , Endothelial Cells/metabolism , Gliosis/pathology , Humans , Microglia/metabolism , Mitochondria/metabolism , Pericytes/metabolism , Phosphorylation , Substantia Nigra/metabolism , Transcriptome
3.
Sci Transl Med ; 11(517)2019 11 06.
Article in English | MEDLINE | ID: mdl-31694927

ABSTRACT

Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/pathology , Lab-On-A-Chip Devices , Liver/pathology , Animals , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dogs , Humans , Kupffer Cells/metabolism , Liver/injuries , Liver Diseases/pathology , Phenotype , Rats , Reproducibility of Results , Risk Factors , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...