Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Atheroscler Thromb ; 29(5): 762-774, 2022 May 01.
Article in English | MEDLINE | ID: mdl-33952832

ABSTRACT

AIMS: Abnormal compositional changes in low-density lipoprotein (LDL) particles, such as triglyceride (TG) enrichment and size reduction, are common in patients with diabetes. Several cohort studies have demonstrated that LDL-TG and sdLDL-cholesterol (C) are sensitive biomarkers for predicting atherosclerotic cardiovascular diseases beyond LDL-C. Although sdLDL has been extensively studied, little is known about the properties of LDL-TG. We investigated similarities or differences between LDL-TG and sdLDL-C. METHODS: Fasting plasma was obtained from 1,085 patients with type 2 diabetes who were enrolled in the diabetes regional cohort study (ViNA Cohort). LDL-TG and sdLDL-C concentrations were measured using a homogeneous assay established by us. In a subset of subjects, LDL-TG and sdLDL-C levels were measured postprandially or after treatment with lipid-lowering drugs. RESULTS: In a quartile analysis, higher LDL-TG quartiles were associated with higher frequency of female and fibrate users, whereas sdLDL-C quartiles were associated with frequency of men, drinking, and metabolic syndrome-related measurements. Higher quartiles of LDL-TG/LDL-C were associated with smoking, drinking, fibrate users, and statin users. LDL-TG was significantly correlated with TG, LDL-C, sdLDL-C, and apolipoprotein (apo) B, with apoB being the primary determinant. LDL-TG correlated to high sensitive C-reactive protein (CRP) independently of other lipids. Mean LDL-TG did not change with fasting/non-fasting. Statin treatment reduced LDL-TG, whereas fibrates increased it, but these drugs reduced sdLDL-C equally. CONCLUSIONS: LDL-TG levels were more tightly regulated by the number of LDL particles than plasma TG levels were. SdLDL-C was closely associated with metabolic syndrome-related factors, whereas LDL-TG was associated with low-grade systemic inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metabolic Syndrome , Apolipoproteins B , Cholesterol , Cholesterol, LDL , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Female , Fibric Acids , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipoproteins , Lipoproteins, LDL , Male , Triglycerides
2.
J Diabetes Investig ; 13(4): 657-667, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34665936

ABSTRACT

AIMS/INTRODUCTION: Diabetic kidney disease (DKD) exacerbates dyslipidemia and increases the incidence of atherosclerotic cardiovascular disease. DKD is a concept that includes typical diabetic nephropathy and an atypical phenotype without proteinuria. We investigated dyslipidemia in different DKD phenotypes that have not been fully studied. MATERIALS AND METHODS: Fasting plasma was obtained from 1,073 diabetes patients enrolled in the regional diabetes cohort (ViNA cohort). Non-proteinuric and proteinuric DKD were defined as an estimated glomerular filtration rate <60 mL/min/1.73 m2 in the absence or presence of urinary albumin-to-creatinine ratio >300 mg/g. Novel lipid risk factors, low-density lipoprotein (LDL) triglyceride (TG) and small dense LDL cholesterol were measured using our established homologous assay. RESULTS: The proportion of atherosclerotic cardiovascular disease patients was higher in non-proteinuric DKD and even higher in proteinuric DKD than in non-DKD. Increased estimated glomerular filtration rate grade and albuminuric stage were independently correlated with higher TG, TG-rich lipoprotein cholesterol and apolipoprotein CIII. Therefore, proteinuric DKD had the highest of these levels. Small dense LDL cholesterol and LDL-TG were higher in the proteinuria without renal dysfunction group in the lipid-lowering drug-free subset. Lipoprotein(a) was higher in DKD regardless of proteinuria. CONCLUSIONS: Proteinuria was associated with an atherogenic subspecies of LDL, whereas renal dysfunction was associated with increased lipoprotein(a). Proteinuria and renal dysfunction independently exacerbated TG-rich lipoprotein-related dyslipidemia. This is in good agreement with the results of large-scale clinical studies in which proteinuria and renal dysfunction synergistically increased the risk of atherosclerotic cardiovascular disease in populations with diabetes.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Dyslipidemias , Cardiovascular Diseases/complications , Cholesterol, LDL , Cross-Sectional Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetic Nephropathies/complications , Diabetic Nephropathies/epidemiology , Dyslipidemias/complications , Female , Humans , Lipoprotein(a) , Male , Proteinuria/complications , Proteinuria/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...