Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(4): e1012121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593161

ABSTRACT

Efflux pumps of the resistance-nodulation-cell division (RND) superfamily, particularly the AcrAB-TolC, and MexAB-OprM, besides mediating intrinsic and acquired resistance, also intervene in bacterial pathogenicity. Inhibitors of such pumps could restore the activities of antibiotics and curb bacterial virulence. Here, we identify pyrrole-based compounds that boost antibiotic activity in Escherichia coli and Pseudomonas aeruginosa by inhibiting their archetype RND transporters. Molecular docking and biophysical studies revealed that the EPIs bind to AcrB. The identified efflux pump inhibitors (EPIs) inhibit the efflux of fluorescent probes, attenuate persister formation, extend post-antibiotic effect, and diminish resistant mutant development. The bacterial membranes remained intact upon exposure to the EPIs. EPIs also possess an anti-pathogenic potential and attenuate P. aeruginosa virulence in vivo. The intracellular invasion of E. coli and P. aeruginosa inside the macrophages was hampered upon treatment with the lead EPI. The excellent efficacy of the EPI-antibiotic combination was evidenced in animal lung infection and sepsis protection models. These findings indicate that EPIs discovered herein with negligible toxicity are potential antibiotic adjuvants to address life-threatening Gram-negative bacterial infections.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Virulence , Escherichia coli/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Microbial , Bacteria/metabolism , Cell Division , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Escherichia coli Proteins/metabolism
2.
J Biol Chem ; 296: 100308, 2021.
Article in English | MEDLINE | ID: mdl-33493516

ABSTRACT

The δ-proteobacteria Myxococcus xanthus displays social (S) and adventurous (A) motilities, which require pole-to-pole reversal of the motility regulator proteins. Mutual gliding motility protein C (MglC), a paralog of GTPase-activating protein Mutual gliding motility protein B (MglB), is a member of the polarity module involved in regulating motility. However, little is known about the structure and function of MglC. Here, we determined ∼1.85 Å resolution crystal structure of MglC using Selenomethionine Single-wavelength anomalous diffraction. The crystal structure revealed that, despite sharing <9% sequence identity, both MglB and MglC adopt a Regulatory Light Chain 7 family fold. However, MglC has a distinct ∼30° to 40° shift in the orientation of the functionally important α2 helix compared with other structural homologs. Using isothermal titration calorimetry and size-exclusion chromatography, we show that MglC binds MglB in 2:4 stoichiometry with submicromolar range dissociation constant. Using small-angle X-ray scattering and molecular docking studies, we show that the MglBC complex consists of a MglC homodimer sandwiched between two homodimers of MglB. A combination of size-exclusion chromatography and site-directed mutagenesis studies confirmed the MglBC interacting interface obtained by molecular docking studies. Finally, we show that the C-terminal region of MglB, crucial for binding its established partner MglA, is not required for binding MglC. These studies suggest that the MglB uses distinct interfaces to bind MglA and MglC. Based on these data, we propose a model suggesting a new role for MglC in polarity reversal in M. xanthus.


Subject(s)
Bacterial Proteins/chemistry , Cell Polarity/genetics , Molecular Motor Proteins/chemistry , Myxococcus xanthus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Molecular Docking Simulation , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Mutation , Myxococcus xanthus/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...