Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Sci ; 13(11): 3256-3262, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414877

ABSTRACT

In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure-activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.

2.
J Med Chem ; 65(3): 2633-2645, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35104142

ABSTRACT

Here, we describe molecular engineering of monovalent ultra-long acting two-chain insulin-Fc conjugates. Insulin-Fc conjugates were synthesized using trifunctional linkers with one amino reactive group for reaction with a lysine residue of insulin and two thiol reactive groups used for re-bridging of a disulfide bond within the Fc molecule. The ultra-long pharmacokinetic profile of the insulin-Fc conjugates was the result of concertedly slowing insulin receptor-mediated clearance by (1) introduction of amino acid substitutions that lowered the insulin receptor affinity and (2) conjugating insulin to the Fc element. Fc conjugation leads to recycling by the neonatal Fc receptor and increase in the molecular size, both contributing to the ultra-long pharmacokinetic and pharmacodynamic profiles.


Subject(s)
Hypoglycemic Agents/chemical synthesis , Immunoconjugates/chemistry , Immunoglobulin Fc Fragments/chemistry , Insulin, Long-Acting/chemical synthesis , Amino Acid Sequence , Animals , Cell Line , Diabetes Mellitus, Experimental/drug therapy , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Insulin, Long-Acting/pharmacokinetics , Insulin, Long-Acting/therapeutic use , Male , Mesocricetus , Protein Engineering , Rats, Sprague-Dawley
3.
J Med Chem ; 64(1): 616-628, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356257

ABSTRACT

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, 10, in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis. Ultralong pharmacokinetic profiles were obtained by attaching an albumin-binding side chain derived from octadecanedioic (C18) or icosanedioic acid (C20) to the lysine in position B29. Crucial for obtaining the ultralong PK profile was also a significant reduction of insulin receptor affinity. Oral bioavailability in dogs indicated that C18-based analogues were superior to C20-based analogues. These studies led to the identification of the two clinical candidates OI338 and OI320 (10 and 24, respectively).


Subject(s)
Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Acylation , Administration, Oral , Amino Acid Sequence , Animals , Biological Availability , Delayed-Action Preparations , Dogs , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Insulin/chemistry , Insulin/pharmacokinetics , Rats
4.
Sci Rep ; 6: 26236, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27196125

ABSTRACT

The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Protein Binding , Protein Conformation
5.
Eur J Pharmacol ; 773: 24-31, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26808305

ABSTRACT

The pharmacological potential of Calcitonin gene-related peptide (CGRP) beyond vasodilation is not completely understood and studies are limited by the potent vasodilatory effect and the short half-life of CGRP. In particular, the effects of CGRP on metabolic diseases are not clarified. A peptide analogue of the α form of CGRP (αAnalogue) with prolonged half-life (10.2 ± 0.9h) in rodents was synthesised and used to determine specific metabolic effects in 3 rodent models; normal rats, diet-induced obese rats and the Leptin deficient mouse model (ob/ob mice). The αAnalogue (100 nmol/kg) induced elevated energy expenditure and reduced food intake after single dosing in normal rats. In addition, the αAnalogue increased levels of circulating Glucagon-Like Peptide-1 (GLP-1) by >60% and a specific concentration dependent CGRP-induced GLP-1 secretion was verified in a murine L-cell line. Two weeks treatment of the type 2 diabetic ob/ob mice with the αAnalogue caused reduction in fasting insulin levels (199 ± 36 pM vs 332 ± 68 pM) and a tendency to reduce fasting blood glucose (11.2 ± 1.1mM vs 9.5 ± 0.5mM) and % glycosylated haemoglobin (HbA1c) (5.88 ± 0.17 vs 5.12 ± 0.24), demonstrating a potential anti-diabetic effect. Furthermore, two weeks treatment of diet-induced obese rats with the αAnalogue caused reduction in food intake and a significant decline in body weight (3.6 ± 1.9 gvs. -36 ± 1.1g). We have demonstrated that long-acting CGRP analogues may have a therapeutic potential for the treatment of type 2 diabetes through positive metabolic effects and effect on GLP-1 secretion.


Subject(s)
Calcitonin Gene-Related Peptide/analogs & derivatives , Calcitonin Gene-Related Peptide/pharmacology , Glucagon-Like Peptide 1/metabolism , Animals , Body Weight/drug effects , CHO Cells , Calcitonin Gene-Related Peptide/administration & dosage , Cricetinae , Cricetulus , Eating/drug effects , Energy Metabolism/drug effects , Glucose/metabolism , Homeostasis/drug effects , Mice , Rats
6.
J Mol Endocrinol ; 49(2): 69-78, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22693263

ABSTRACT

We have previously demonstrated that a homozygous inactivating P86S mutation of the glucagon receptor (GCGR) causes a novel human disease of hyperglucagonemia, pancreatic α-cell hyperplasia, and pancreatic neuroendocrine tumors (Mahvash disease). The mechanisms for the decreased activity of the P86S mutant (P86S) are abnormal receptor localization to the endoplasmic reticulum (ER) and defective interaction with glucagon. To search for targeted therapies for Mahvash disease, we examined whether P86S can be trafficked to the plasma membrane by pharmacological chaperones and whether novel glucagon analogs restore effective receptor interaction. We used enhanced green fluorescent protein-tagged P86S stably expressed in HEK 293 cells to allow fluorescence imaging and western blotting and molecular modeling to design novel glucagon analogs in which alanine 19 was replaced with serine or asparagine. Incubation at 27 °C largely restored normal plasma membrane localization and normal processing of P86S but osmotic chaperones had no effects. The ER stressors thapsigargin and curcumin partially rescued P86S. The lipophilic GCGR antagonist L-168,049 also partially rescued P86S, so did Cpd 13 and 15 to a smaller degree. The rescued P86S led to more glucagon-stimulated cAMP production and was internalized by glucagon. Compared with the native glucagon, the novel glucagon analogs failed to stimulate more cAMP production by P86S. We conclude that the mutant GCGR is partially rescued by several pharmacological chaperones and our data provide proof-of-principle evidence that Mahvash disease can be potentially treated with pharmacological chaperones. The novel glucagon analogs, however, failed to interact with P86S more effectively.


Subject(s)
Glucagon/analogs & derivatives , Mutation , Protein Transport/drug effects , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Alanine/chemistry , Asparagine/chemistry , Cell Membrane/metabolism , Curcumin/pharmacology , Cyclic AMP/metabolism , Drug Design , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/pharmacology , Pancreatic Neoplasms/genetics , Pyridines , Pyrroles , Receptors, Glucagon/antagonists & inhibitors , Serine/chemistry , Thapsigargin/pharmacology
7.
J Med Chem ; 52(9): 2989-3000, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19385613

ABSTRACT

The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures. The compounds generally showed species selectivity for glucagon receptor binding with poor affinities for the rat, mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem to reflect the human situation. One compound of this series, 18, was tested intravenously in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyperglycaemia and was shown dose-dependently to decrease glycaemia. Further, high plasma exposures and a long plasma half-life (5.2 h) were obtained.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/pharmacokinetics , Administration, Oral , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Half-Life , Humans , Receptors, Glucagon/metabolism , Species Specificity , Thiazoles/chemistry , Thiazoles/metabolism
8.
J Med Chem ; 51(17): 5387-96, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707090

ABSTRACT

Optimization of a new series of small molecule human glucagon receptor (hGluR) antagonists is described. In the process of optimizing glucagon receptor antagonists, we counter-screened against the closely related human gastric inhibitory polypeptide receptor (hGIPR), and through structure activity analysis, we obtained compounds with low nanomolar affinities toward the hGluR, which were selective against the hGIPR and the human glucagon-like peptide-1 receptor (hGLP-1R). In the best cases, we obtained a >50 fold selectivity for the hGluR over the hGIPR and a >1000 fold selectivity over the hGLP-1R. A potent and selective glucagon receptor antagonist was demonstrated to inhibit glucagon-induced glycogenolysis in primary rat hepatocytes as well as to lower glucagon-induced hyperglycemia in Sprague-Dawley rats. Furthermore, the compound was shown to lower blood glucose in the ob/ob mouse after oral dosing.


Subject(s)
Hyperglycemia/drug therapy , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Glucagon/antagonists & inhibitors , Animals , Blood Glucose/drug effects , Cells, Cultured , Glycogenolysis/drug effects , Hepatocytes/metabolism , Humans , Mice , Mice, Obese , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 17(19): 5472-8, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17827014

ABSTRACT

Following our previous publication describing the biological profiles, we herein describe the structure-activity relationships of a core set of quinoxalines as the hGLP-1 receptor agonists. The most potent and efficacious compounds are 6,7-dichloroquinoxalines bearing an alkyl sulfonyl group at the C-2 position and a secondary alkyl amino group at the C-3 position. These findings serve as a valuable starting point for the discovery of more drug-like small molecule agonists for the hGLP-1 receptor.


Subject(s)
Receptors, Glucagon/agonists , Cyclic AMP/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Glucagon-Like Peptide-1 Receptor , Humans , Indicators and Reagents , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Structure-Activity Relationship
10.
Proc Natl Acad Sci U S A ; 104(3): 937-42, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17213325

ABSTRACT

The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists.


Subject(s)
Quinoxalines/pharmacology , Receptors, Glucagon/agonists , Sulfones/pharmacology , Thiadiazoles/pharmacology , Animals , Cells, Cultured , Cricetinae , Drug Evaluation, Preclinical , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptides/chemistry , Glucagon-Like Peptides/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Mice , Mice, Knockout , Molecular Structure , Pancreas/drug effects , Pancreas/metabolism , Pancreas/surgery , Perfusion , Quinoxalines/chemistry , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Sulfones/chemistry , Thiadiazoles/chemistry
11.
J Mol Biol ; 363(5): 977-88, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-16989858

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. A variety of GLP-1 sequences are known from amphibian species, and some of these have been tested here and found to be able to bind and activate the human GLP-1 receptor. While little difference was observed for the in vitro potency for the human GLP-1 receptor, larger differences were found in the enzymatic stability of these peptides. Two peptides showed increased enzymatic stability, and they group together phylogenetically, though they originate from Amphibia and Reptilia. We have used ancestral sequence reconstruction to analyze the evolution of these GLP-1 molecules, including the synthesis of new peptides. We find that the increased stability could not be observed in the resurrected peptides from the common ancestor of frogs, even though they maintain the ability to activate the human GLP-1 receptor. Another method, using residue mapping on evolutionary branches yielded peptides that had maintained potency towards the receptor and also showed increased stability. This represents a new approach using evolutionary data in protein engineering.


Subject(s)
Evolution, Molecular , Glucagon-Like Peptide 1/chemistry , Peptides/chemistry , Receptors, Glucagon/agonists , Amino Acid Sequence , Animals , Blood Glucose/metabolism , Cell Line , Dipeptidyl Peptidase 4/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide-1 Receptor , Humans , In Vitro Techniques , Male , Mice , Mice, Mutant Strains , Molecular Sequence Data , Peptides/pharmacology , Phylogeny , Radioligand Assay , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...