Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(35): 32806-13, 2001 Aug 31.
Article in English | MEDLINE | ID: mdl-11443107

ABSTRACT

Recent evidence supports a role for proteoglycans in polycation-mediated gene delivery. Therefore, the interaction of glycosaminoglycans with cationic lipid-DNA complexes (CLDCs) has been characterized using a combination of biophysical approaches. At low ionic strength, CLDCs bind to heparin-derivatized Sepharose particles, with the ratio of cationic lipid to DNA controlling the binding. Incorporation of the helper lipids cholesterol or 1,2-dioleoyl-phosphatidylethanolamine increases the amount of bound CLDC. Heparin also induces the aggregation of CLDCs, with cholesterol reducing this effect. Isothermal titration calorimetry demonstrates an endothermic heat for the binding of heparin to CLDCs at low ionic strength, whereas circular dichroism studies suggest a heparin-stimulated release of DNA from CLDCs at a greater than 20-fold charge excess. Increasing the ionic strength to 0.11 reduces CLDC binding to heparin beads, and greatly enhances the release of DNA from CLDCs by heparin. The ability of the cell surface glycosaminoglycan heparan sulfate to release DNA from CLDCs is more sensitive than heparin to the incorporation of the cholesterol or 1,2-dioleoyl-phosphatidylethanolamine. Titration calorimetry reveals an exothermic heat for the interaction glycosaminoglycans with CLDCs at higher ionic strength. These results are consistent with the direct involvement of proteoglycans in transfection.


Subject(s)
DNA/chemistry , Fatty Acids, Monounsaturated/chemistry , Gene Transfer Techniques , Glycerophospholipids/chemistry , Glycosaminoglycans/chemistry , Heparin/chemistry , Phosphatidylethanolamines , Quaternary Ammonium Compounds/chemistry , Calorimetry , Drug Carriers , Kinetics , Light , Liposomes , Scattering, Radiation , Thermodynamics
2.
J Biol Chem ; 276(11): 8037-43, 2001 Mar 16.
Article in English | MEDLINE | ID: mdl-11118456

ABSTRACT

Fourier transform infrared spectroscopy was used to characterize the interaction of the cationic lipids 1,2-dioleoyl-3-trimethylammonium-propane and dioctadecyldimethylammonium bromide with plasmid DNA. The effect of incorporating the neutral colipids cholesterol and dioleoylphosphatidylethanolamine on this interaction was also examined. Additionally, dynamic and phase analysis light scattering were used to monitor the size and zeta potential of the resulting complexes under conditions similar to the Fourier transform infrared measurements. Results suggest that upon interaction of cationic lipids with DNA, the DNA remains in the B form. Distinct changes in the frequency of several infrared bands arising from the DNA bases, however, suggest perturbation of their hydration upon interaction with cationic lipids. A direct interaction of the lipid ammonium headgroup with and dehydration of the DNA phosphate is observed when DNA is complexed with these lipids. Changes in the apolar regions of the lipid bilayer are minimal, whereas the interfacial regions of the membrane show changes in hydration or molecular packing. Incorporation of helper lipids into the cationic membranes results in increased conformational disorder of the apolar region and further dehydration of the interfacial region. Changes in the hydration of the DNA bases were also observed as the molar ratio of helper lipid in the membranes was increased.


Subject(s)
DNA/chemistry , Lipids/chemistry , Phosphatidylethanolamines , Plasmids , Cholesterol/pharmacology , Colloids , Glycerophospholipids/pharmacology , Nucleic Acid Conformation , Spectroscopy, Fourier Transform Infrared , Vibration
3.
J Pharm Sci ; 89(3): 289-96, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10707010

ABSTRACT

Nonviral, plasmid-based therapeutics are a new class of pharmaceutical agents that offer the potential to cure many diseases that are currently considered untreatable. While nonviral vectors have shown promise in clinical trials, their physical instability in liquid formulations represents a major barrier to the development of these agents as marketable products. While several different approaches have been used to improve the stability of liquid formulations, it is unclear whether aqueous suspensions can be rendered sufficiently stable to withstand the stresses associated with shipping and storage. Some studies have demonstrated the potential of frozen formulations to be stored for prolonged periods of time, however the potential for phase changes in frozen samples combined with the expense of maintaining the frozen state during shipping has stimulated an interest in developing dehydrated preparations. Although the stresses associated with dehydration are considerable, several studies have reported that sugars are capable of preserving the physical characteristics and transfection activity of nonviral vectors during acute lyophilization stress. This paper discusses the merits and drawbacks of the different approaches to preserving nonviral vectors, and identifies research areas in which more work is needed to develop stable formulations of plasmid-based therapeutics.


Subject(s)
Plasmids/chemistry , Plasmids/therapeutic use , Animals , Drug Stability , Excipients , Humans , Plasmids/administration & dosage
4.
Pharm Res ; 12(1): 69-77, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7724490

ABSTRACT

During protein lyophilization, it is common practice to complete the freezing step as fast as possible in order to avoid protein denaturation, as well as to obtain a final product of uniform quality. We report a contradictory observation made during lyophilization of recombinant tissue-type plasminogen activator (t-PA) formulated in arginine. Fast cooling during lyophilization resulted in a lyophilized product that yielded more opalescent particulates upon long term storage at 50 degrees C, under a 150 mTorr nitrogen seal gas environment. Fast cooling also resulted in a lyophilized cake with a large internal surface area. Studies on lyophilized products containing 1% (w/w) residual moisture and varying cake surface areas (0.22-1.78 m2/gm) revealed that all lyophilized cakes were in an amorphous state with similar glass transition temperatures (103-105 degrees C). However, during storage the rate of opalescent particulate formation in the lyophilized product (as determined by UV optical density measurement in the 360 to 340 nm range for the reconstituted solution) was proportional to the cake surface area. We suggest that this is a surface-related phenomenon in which the protein at the solid-void interface of the lyophilized cake denatures during storage at elevated temperatures. Irreversible denaturation at the ice-liquid interface during freezing in lyophilization is unlikely to occur, since repeated freezing/thawing did not show any adverse effect on the protein. Infrared spectroscopic analysis could not determine whether protein, upon lyophilization, at the solid-void interface would still be in a native form.


Subject(s)
Chemistry, Pharmaceutical/methods , Tissue Plasminogen Activator/chemistry , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Physical , Drug Stability , Drug Storage , Freeze Drying , Heating , Particle Size , Protein Denaturation , Recombinant Proteins/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...