Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ; 37(2): 494-504, 2018 04.
Article in English | MEDLINE | ID: mdl-28302406

ABSTRACT

The potential of fish or fish oil as supplier for eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) for reducing cardiovascular risk factors and supporting therapy of chronic inflammatory diseases, has been investigated intensively, but our knowledge about the physiological effects of the individual compounds EPA and DHA are limited. STUDY DESIGN: In this double-blind pilot study, thirty-eight patients with defined RA were allocated to consume foods enriched with microalgae oil from Schizochytrium sp. (2.1 g DHA/d) or sunflower oil (placebo) for 10 weeks (cross-over), maintaining the regular RA medication during the study. RESULTS: In contrast to placebo, the daily consumption of DHA led to a decline in the sum of tender and swollen joints (68/66) from 13.9 ± 7.4 to 9.9 ± 7.0 (p = 0.010), total DAS28 from 4.3 ± 1.0 to 3.9 ± 1.2 (p = 0.072), and ultrasound score (US-7) from 15.1 ± 9.5 to 12.4 ± 7.0 (p = 0.160). The consumption of placebo products caused an increase of the n-6 PUFA linoleic acid and arachidonic acid (AA) in erythrocyte lipids (EL, p < 0.05). The amount of DHA was doubled in EL of DHA-supplemented patients and the ratios of AA/EPA and AA/DHA dropped significantly. We speculate that the production of pro-inflammatory/non-resolving AA-derived eicosanoids might decrease in relation to anti-inflammatory/pro-resolving DHA- and EPA-derived lipid mediators. In fact, plasma concentrations of AA-derived thromboxane B2 and the capacity of blood to convert AA to the pro-inflammatory 5-lipoxygenase product 5-hydroxyeicosatetraenoic acid were significantly reduced, while levels of the DHA-derived maresin/resolvin precursors 14-/17-hydroxydocosahexaenoic acid significantly increased due to DHA supplementation. CONCLUSION: The study shows for the first time that supplemented microalgae DHA ameliorates disease activity in patients with RA along with a shift in the balance of AA- and DHA-derived lipid mediators towards an anti-inflammatory/pro-resolving state.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Docosahexaenoic Acids/therapeutic use , Microalgae , Plant Oils/therapeutic use , Sunflower Oil/therapeutic use , Cross-Over Studies , Double-Blind Method , Female , Germany , Humans , Male , Middle Aged , Pilot Projects , Treatment Outcome
2.
Br J Pharmacol ; 171(9): 2399-412, 2014 May.
Article in English | MEDLINE | ID: mdl-24467325

ABSTRACT

BACKGROUND AND PURPOSE: 1,4-Benzoquinones are well-known inhibitors of 5-lipoxygenase (5-LOX, the key enzyme in leukotriene biosynthesis), but the molecular mechanisms of 5-LOX inhibition are not completely understood. Here we investigated the molecular mode of action and the pharmacological profile of the novel 1,4-benzoquinone derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id) in vitro and its effectiveness in vivo. EXPERIMENTAL APPROACH: Mechanistic investigations in cell-free assays using 5-LOX and other enzymes associated with eicosanoid biosynthesis were conducted, along with cell-based studies in human leukocytes and whole blood. Molecular docking of RF-Id into the 5-LOX structure was performed to illustrate molecular interference with 5-LOX. The effectiveness of RF-Id in vivo was also evaluated in two murine models of inflammation. KEY RESULTS: RF-Id consistently suppressed 5-LOX product synthesis in human leukocytes and human whole blood. RF-Id also blocked COX-2 activity but did not significantly inhibit COX-1, microsomal PGE2 synthase-1, cytosolic PLA2 or 12- and 15-LOX. Although RF-Id lacked radical scavenging activity, reducing conditions facilitated its inhibitory effect on 5-LOX whereas cell stress impaired its efficacy. The reduced hydroquinone form of RF-Id (RED-RF-Id) was a more potent inhibitor of 5-LOX as it had more bidirectional hydrogen bonds within the 5-LOX substrate binding site. Finally, RF-Id had marked anti-inflammatory effects in mice in vivo. CONCLUSIONS AND IMPLICATIONS: RF-Id represents a novel anti-inflammatory 1,4-benzoquinone that potently suppresses LT biosynthesis by direct inhibition of 5-LOX with effectiveness in vivo. Mechanistically, RF-Id inhibits 5-LOX in a non-redox manner by forming discrete molecular interactions within the active site of 5-LOX.


Subject(s)
Anti-Inflammatory Agents/chemistry , Benzoquinones/chemistry , Lipoxygenase Inhibitors/chemistry , Molecular Docking Simulation , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Benzoquinones/metabolism , Benzoquinones/therapeutic use , Edema/drug therapy , Edema/metabolism , Humans , Lipoxygenase Inhibitors/metabolism , Lipoxygenase Inhibitors/therapeutic use , Male , Mice , Molecular Docking Simulation/methods , Protein Structure, Secondary , Sheep , Treatment Outcome
3.
Article in English | MEDLINE | ID: mdl-23870194

ABSTRACT

Pregnancy is accompanied by major immunological changes to maintain both tolerance for the fetus and immune competence. Leukotrienes are powerful 5-lipoxygenase-derived inflammatory mediators and the characteristics of leukotriene-related diseases (e.g., asthma, allergic rhinitis) change during pregnancy. Here, we show that pregnancy affects leukotriene synthesis in human blood and leukocytes. 5-Lipoxygenase product formation in stimulated blood of pregnant women was significantly higher than in non-pregnant females. Although a pregnancy-related increase in neutrophil and monocyte counts may explain these observations, granulocytes of pregnant donors have lower leukotriene-synthetic capacities. On the other hand, granulocytes from non-pregnant woman produced more leukotrienes when resuspended in plasma of pregnant women than of non-pregnant females. Together, we show that leukotriene biosynthesis in maternal blood is increased by the interrelations of higher leukocyte numbers, lower cellular capacity for leukotriene synthesis and stimulatory effects of plasma. This bias may affect leukotriene-related diseases during pregnancy and their pharmacological treatment.


Subject(s)
Leukocytes, Mononuclear/metabolism , Leukotrienes/biosynthesis , Pregnancy/blood , Adult , Arachidonate 5-Lipoxygenase/metabolism , Blood Cell Count , Female , Granulocytes/metabolism , Humans , Young Adult
4.
Br J Pharmacol ; 162(1): 147-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20840544

ABSTRACT

BACKGROUND AND PURPOSE: Frankincense, the gum resin derived from Boswellia species, showed anti-inflammatory efficacy in animal models and in pilot clinical studies. Boswellic acids (BAs) are assumed to be responsible for these effects but their anti-inflammatory efficacy in vivo and their molecular modes of action are incompletely understood. EXPERIMENTAL APPROACH: A protein fishing approach using immobilized BA and surface plasmon resonance (SPR) spectroscopy were used to reveal microsomal prostaglandin E(2) synthase-1 (mPGES1) as a BA-interacting protein. Cell-free and cell-based assays were applied to confirm the functional interference of BAs with mPGES1. Carrageenan-induced mouse paw oedema and rat pleurisy models were utilized to demonstrate the efficacy of defined BAs in vivo. KEY RESULTS: Human mPGES1 from A549 cells or in vitro-translated human enzyme selectively bound to BA affinity matrices and SPR spectroscopy confirmed these interactions. BAs reversibly suppressed the transformation of prostaglandin (PG)H(2) to PGE(2) mediated by mPGES1 (IC(50) = 3-10 µM). Also, in intact A549 cells, BAs selectively inhibited PGE(2) generation and, in human whole blood, ß-BA reduced lipopolysaccharide-induced PGE(2) biosynthesis without affecting formation of the COX-derived metabolites 6-keto PGF(1α) and thromboxane B(2) . Intraperitoneal or oral administration of ß-BA (1 mg·kg(-1) ) suppressed rat pleurisy, accompanied by impaired levels of PGE(2) and ß-BA (1 mg·kg(-1) , given i.p.) also reduced mouse paw oedema, both induced by carrageenan. CONCLUSIONS AND IMPLICATIONS: Suppression of PGE(2) formation by BAs via interference with mPGES1 contribute to the anti-inflammatory effectiveness of BAs and of frankincense, and may constitute a biochemical basis for their anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Boswellia/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Triterpenes/pharmacology , Animals , Catalysis , Cell Line , Cell-Free System , Humans , Immunoenzyme Techniques , Intramolecular Oxidoreductases/metabolism , Male , Mice , Prostaglandin-E Synthases , Rats , Rats, Wistar , Surface Plasmon Resonance , Triterpenes/isolation & purification
5.
Br J Pharmacol ; 161(3): 555-70, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20880396

ABSTRACT

BACKGROUND AND PURPOSE: Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH: Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS: Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION: Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed.


Subject(s)
Arachidonic Acid/metabolism , Dinoprostone/biosynthesis , Hydroxyurea/analogs & derivatives , Lipoxygenase Inhibitors/pharmacology , Macrophages/drug effects , Prostaglandins F/metabolism , Animals , Arachidonate 5-Lipoxygenase/genetics , Carrageenan , Cyclooxygenase 2/metabolism , Dinoprostone/blood , Disease Models, Animal , Humans , Hydroxyurea/pharmacology , Interferon-gamma/pharmacology , Intramolecular Oxidoreductases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred Strains , Pleurisy/chemically induced , Pleurisy/metabolism , Prostaglandin-E Synthases , Rats , Rats, Wistar , Zymosan
6.
Curr Med Chem ; 16(32): 4274-96, 2009.
Article in English | MEDLINE | ID: mdl-19754418

ABSTRACT

Pharmacological suppression of cyclooxygenase (COX)-1 and -2-mediated prostanoid biosynthesis by non steroidal anti-inflammatory drugs (NSAIDs) is used in the therapy of inflammation, fever, and pain. However, long-term application of these drugs is associated with severe side effects, mainly gastrointestinal injury and renal irritations, apparently due to impaired biosynthesis of physiologically relevant prostanoids. Although COX-2 selective drugs (coxibs) show reduced gastrointestinal complications, recent clinical trials indicated a significantly increased cardiovascular risk. In order to minimize these side-effects, selective suppression of microsomal prostaglandin E(2) synthase (mPGES)-1 derived prostaglandin (PG)E(2) formation has been considered as alternative to general inhibition of prostanoid biosynthesis. mPGES-1 is functionally coupled to COX-2 being responsible for excessive PGE(2) generation connected to pathologies and current knowledge suggests key roles of mPGES-1 in inflammation, pain, fever, atherosclerosis, and tumorigenesis. However, mPGES-1 as promising therapeutic target was questioned because blockade of mPGES-1 allows redirection of the substrate PGH(2) to other PG synthases, and the consequences are still elusive. This review summarizes current knowledge about synthetic and natural mPGES-1 inhibitors focusing on structural and mechanistic investigations. Further, the therapeutic efficiency and safety is critically discussed on the basis of cellular and animal studies in which mPGES-1 activity was pharmacologically or genetically (knockout, knockdown) modulated.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Enzyme Inhibitors/pharmacology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Prostaglandin-E Synthases , Prostaglandin-Endoperoxide Synthases/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E/physiology
7.
Br J Pharmacol ; 156(6): 952-61, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19298395

ABSTRACT

BACKGROUND AND PURPOSE: The selective inhibition of prostaglandin (PG)E(2) formation via interference with microsomal PGE(2) synthase (mPGES)-1 could have advantages in the treatment of PGE(2)-associated diseases, such as inflammation, fever and pain, compared with a general suppression of all PG biosynthesis, provided by inhibition of cyclooxygenase (COX)-1 and 2. Here, we addressed whether the naturally occurring acylphloroglucinol myrtucommulone (MC) from Myrtus communis L. (myrtle) affected mPGES-1. EXPERIMENTAL APPROACH: The effect of MC on PGE(2) formation was investigated in a cell-free assay by using microsomal preparations of interleukin-1beta-stimulated A549 cells as the source of mPGES-1, in intact A549 cells, and in lipopolysaccharide-stimulated human whole blood. Inhibition of COX-1 and COX-2 activity in cellular and cell-free assays was assessed by measuring 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-oxo PGF(1alpha) formation. KEY RESULTS: MC concentration-dependently inhibited cell-free mPGES-1-mediated conversion of PGH(2) to PGE(2) (IC(50) = 1 micromol x L(-1)). PGE(2) formation was also diminished in intact A549 cells as well as in human whole blood at low micromolar concentrations. Neither COX-2 activity in A549 cells nor isolated human recombinant COX-2 was significantly affected by MC up to 30 micromol x L(-1), and only moderate inhibition of cellular or cell-free COX-1 was evident (IC(50) > 15 micromol x L(-1)). CONCLUSIONS AND IMPLICATIONS: MC is the first natural product to inhibit mPGES-1 that efficiently suppresses PGE(2) formation without significant inhibition of the COX enzymes. This provides an interesting pharmacological profile suitable for interventions in inflammatory disorders, without the typical side effects of coxibs and non-steroidal anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Microsomes/drug effects , Phloroglucinol/analogs & derivatives , 6-Ketoprostaglandin F1 alpha/biosynthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line, Tumor , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemistry , Dinoprostone/biosynthesis , Dinoprostone/blood , Fatty Acids, Unsaturated/blood , Humans , Microsomes/enzymology , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Prostaglandin-E Synthases
SELECTION OF CITATIONS
SEARCH DETAIL
...