Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Vaccines (Basel) ; 9(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065899

ABSTRACT

Salmonella Typhimurium (STm) represents the most prevalent cause of invasive non-typhoidal Salmonella (iNTS) disease, and currently no licensed vaccine is available. In this work we characterized the long-term anti-bacterial immunity elicited by a STm vaccine based on Generalized Modules of Membrane Antigens (GMMA) delivering O:4,5 antigen, using a murine model of systemic infection. Subcutaneous immunization of mice with STmGMMA/Alhydrogel elicited rapid, high, and persistent antigen-specific serum IgG and IgM responses. The serum was bactericidal in vitro. O:4,5-specific IgG were also detected in fecal samples after immunization and positively correlated with IgG observed in intestinal washes. Long-lived plasma cells and O:4,5-specific memory B cells were detected in spleen and bone marrow. After systemic STm challenge, a significant reduction of bacterial load in blood, spleen, and liver, as well as a reduction of circulating neutrophils and G-CSF glycoprotein was observed in STmGMMA/Alhydrogel immunized mice compared to untreated animals. Taken together, these data support the development of a GMMA-based vaccine for prevention of iNTS disease.

2.
PLoS One ; 12(7): e0181508, 2017.
Article in English | MEDLINE | ID: mdl-28742866

ABSTRACT

Factor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design. We performed a pair-wise analysis of 48 surface-exposed amino acids involved in interacting with factor H, among 383 fHbp variant group 1 sequences. We generated isogenic NOMV-producing meningococcal strains from an African serogroup W isolate, each over-expressing one of four fHbp variant group 1 sequences (ID 1, 5, 9, or 74), including those most common among invasive African meningococcal isolates. Mice were immunised with each NOMV, and sera tested for IgG levels against each of the rfHbp ID and for ability to kill a panel of heterologous meningococcal isolates. At the fH-binding site, ID pairs differed by a maximum of 13 (27%) amino acids. ID 9 shared an amino acid sequence common to 83 ID types. The selected ID types differed by up to 6 amino acids, in the fH-binding site. All NOMV and rfHbp induced high IgG levels against each rfHbp. Serum killing from mice immunised with rfHbp was generally less efficient and more restricted compared to NOMV, which induced antibodies that killed most meningococci tested, with decreased stringency for ID type differences. Breadth of killing was mostly due to anti-fHbp antibodies, with some restriction according to ID type sequence differences. Nevertheless, under our experimental conditions, no relationship between antibody cross-reactivity and variation fH-binding site sequence was identified. NOMV over-expressing different fHbp IDs belonging to variant group 1 induce antibodies with fine specificities against fHbp, and ability to kill broadly meningococci expressing heterologous fHbp IDs. The work reinforces that meningococcal NOMV with OE fHbp is a promising vaccine strategy, and provides a basis for rational selection of antigen sequence types for over-expression on NOMV.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Complement Factor H/immunology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Animals , Antibody Formation , Antigens, Bacterial/genetics , Antigens, Bacterial/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/therapeutic use , Cloning, Molecular , Female , Humans , Immunization , Meningococcal Infections/blood , Meningococcal Infections/immunology , Meningococcal Vaccines/genetics , Meningococcal Vaccines/therapeutic use , Mice , Mutation , Neisseria meningitidis/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
3.
Mol Biotechnol ; 57(1): 84-93, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223624

ABSTRACT

Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.


Subject(s)
Amino Acids/analysis , Antigens, Bacterial/analysis , Cell Membrane/metabolism , Colorimetry/methods , Serum Albumin, Bovine/analysis , Animals , Cattle , Color , Electrophoresis, Polyacrylamide Gel , Genotype , Phenotype , Reproducibility of Results
4.
Vaccine ; 32(23): 2688-95, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24704334

ABSTRACT

INTRODUCTION: Neisseria meningitidis causes epidemics of meningitis in sub-Saharan Africa. These have mainly been caused by capsular group A strains, but W and X strains are increasingly contributing to the burden of disease. Therefore, an affordable vaccine that provides broad protection against meningococcal disease in sub-Saharan Africa is required. METHODS: We prepared Generalized Modules for Membrane Antigens (GMMA) from a recombinant serogroup W strain expressing PorA P1.5,2, which is predominant among African W isolates. The strain was engineered with deleted capsule locus genes, lpxL1 and gna33 genes and over-expressed fHbp variant 1, which is expressed by the majority of serogroup A and X isolates. RESULTS: We screened nine W strains with deleted capsule locus and gna33 for high-level GMMA release. A mutant with five-fold increased GMMA release compared with the wild type was further engineered with a lpxL1 deletion and over-expression of fHbp. GMMA from the production strain had 50-fold lower ability to stimulate IL-6 release from human PBMC and caused 1000-fold lower TLR-4 activation in Human Embryonic Kidney cells than non-detoxified GMMA. In mice, the GMMA vaccine induced bactericidal antibody responses against African W strains expressing homologous PorA and fHbp v.1 or v.2 (geometric mean titres [GMT]=80,000-200,000), and invasive African A and X strains expressing a heterologous PorA and fHbp variant 1 (GMT=20-2500 and 18-5500, respectively). Sera from mice immunised with GMMA without over-expressed fHbp v.1 were unable to kill the A and X strains, indicating that bactericidal antibodies against these strains are directed against fHbp. CONCLUSION: A GMMA vaccine produced from a recombinant African N. meningitidis W strain with deleted capsule locus, lpxL1, gna33 and overexpressed fHbp v.1 has potential as an affordable vaccine with broad coverage against strains from all main serogroups currently causing meningococcal meningitis in sub-Saharan Africa.


Subject(s)
Antigens, Bacterial/immunology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Bacterial Proteins/immunology , Female , Gene Knockout Techniques , Genetic Engineering , HEK293 Cells , Humans , Immunoglobulin G/blood , Interleukin-6/immunology , Mice , Neisseria meningitidis, Serogroup W-135/genetics , Serum Bactericidal Antibody Assay
5.
F1000Res ; 3: 264, 2014.
Article in English | MEDLINE | ID: mdl-25901274

ABSTRACT

Neisseria meningitidis is a major cause of bacterial meningitis and a considerable health problem in the 25 countries of the 'African Meningitis Belt' that extends from Senegal in West Africa to Ethiopia in the East. Approximately 80% of cases of meningococcal meningitis in Africa have been caused by strains belonging to capsular serogroup A. After the introduction of a serogroup A conjugate polysaccharide vaccine, MenAfriVac (™), that began in December 2010, the incidence of meningitis due to serogroup A has markedly declined in this region. Currently, serogroup W of N. meningitidis accounts for the majority of cases. Vaccines based on sub-capsular antigens, such as Generalized Modules for Membrane Antigens (GMMA), are under investigation for use in Africa. To analyse the antigenic properties of a serogroup W wave of colonisation and disease, we investigated the molecular diversity of the protein vaccine antigens PorA, Neisserial Adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and factor H binding protein (fHbp) of 31 invasive and carriage serogroup W isolates collected as part of a longitudinal study from Ghana and Burkina Faso between 2003 and 2009. We found that the isolates all expressed fHbp variant 2 ID 22 or 23, differing from each other by only one amino acid, and a single PorA subtype of P1.5,2. Of the isolates, 49% had a functional nhbA gene and 100% had the nadA allele 3, which contained the insertion sequence IS1301 in five isolates. Of the W isolates tested, 41% had high fHbp expression when compared with a reference serogroup B strain, known to be a high expresser of fHbp variant 2. Our results indicate that in this collection of serogroup W isolates, there is limited antigenic diversification over time of vaccine candidate outer membrane proteins (OMP), thus making them promising candidates for inclusion in a protein-based vaccine against meningococcal meningitis for Africa.

6.
PLoS Negl Trop Dis ; 5(9): e1302, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21909444

ABSTRACT

BACKGROUND: Factor H binding protein (fHbp) is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH), which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains. METHODOLOGY/PRINCIPAL FINDINGS: We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV) vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81%) had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates), 9 (W-135), or 74 (X) in variant group 1, or ID 22/23 (W-135) in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine. CONCLUSION/SIGNIFICANCE: NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub-Saharan countries.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Disease Outbreaks , Meningitis, Meningococcal/epidemiology , Meningitis, Meningococcal/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Africa , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Blood Bactericidal Activity , Cross Protection , Cross Reactions , Female , Humans , Meningitis, Meningococcal/microbiology , Mice , Neisseria meningitidis/classification , Neisseria meningitidis/genetics
7.
Vaccine ; 29(29-30): 4728-34, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21571025

ABSTRACT

We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2-3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers<1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Cell-Derived Microparticles/immunology , Endotoxins/immunology , Meningococcal Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/administration & dosage , Bacterial Proteins/administration & dosage , Blood Bactericidal Activity , Cytokines/metabolism , Endotoxins/administration & dosage , Immunization, Secondary/methods , Leukocytes, Mononuclear/immunology , Macaca mulatta , Meningococcal Vaccines/administration & dosage , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
8.
Clin Vaccine Immunol ; 18(5): 736-42, 2011 May.
Article in English | MEDLINE | ID: mdl-21367981

ABSTRACT

Native outer membrane vesicles (NOMV) (not detergent treated), which are prepared from recombinant strains with attenuated endotoxin activity and overexpressed factor H binding protein (fHbp), elicited broad serum bactericidal antibody responses in mice. The amount of overexpressed fHbp required for optimal immunogenicity is not known. In this study we prepared NOMV vaccines from LpxL1 knockout (ΔLpxL1) mutants with penta-acylated lipooligosaccharide and attenuated endotoxin activity. The recombinant strains had wild-type (1×) fHbp expression or were engineered for 3-fold- or 10-fold-increased fHbp expression (3× or 10× fHbp). Control vaccines included NOMV from ΔLpxL1/ΔfHbp mutants or recombinant fHbp. In mice, only the 10× fHbp NOMV vaccine elicited significantly higher serum IgG anti-fHbp antibody titers than the corresponding 1× fHbp NOMV or recombinant fHbp vaccine. The 10× fHbp NOMV vaccine also elicited higher bactericidal responses (P < 0.05) against five group B strains with heterologous PorA than the recombinant fHbp or 1× fHbp NOMV vaccine. The 3× fHbp NOMV vaccine gave higher bactericidal titers against only one strain. Serum bactericidal titers in mice immunized with the control ΔfHbp NOMV vaccines were <1:10, and bactericidal titers in mice immunized with the 10× fHbp NOMV vaccine were <1:10 after adsorption of anti-fHbp antibodies. Mixing antiserum to NOMV vaccines from fHbp knockout mutants with antiserum to recombinant fHbp did not increase anti-fHbp bactericidal titers. Thus, a critical threshold of increased fHbp expression is required for NOMV vaccines to elicit broad serum bactericidal responses, and the antibodies conferring protection are directed primarily at fHbp.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Secretory Vesicles/immunology , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Blood Bactericidal Activity , Female , Gene Expression , Immunoglobulin G/blood , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/genetics , Mice , Microbial Viability , Neisseria meningitidis/metabolism , Secretory Vesicles/metabolism
9.
Clin Vaccine Immunol ; 16(2): 156-62, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19109451

ABSTRACT

Meningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity. To enhance protection, we overexpressed factor H binding protein (fHbp) from the antigenic variant 1 group. The vaccine elicited broad serum bactericidal antibody responses in mice against strains with fHbp variant 1 (approximately 70% of group B isolates) but not against strains with variant 2 or 3. In the present study, we constructed a mutant of group B strain NZ98/254 with attenuated endotoxin that expressed both endogenous variant 1 and heterologous fHbp variant 2. A mixture of the two native OMV vaccines from the H44/76 and NZ98/254 mutants stimulated proinflammatory cytokine responses by human peripheral blood mononuclear cells similar to those stimulated by control, detergent-treated OMV vaccines from the wild-type strains. In mice, the mixture of the two native OMV vaccines elicited broad serum bactericidal antibody responses against strains with heterologous PorA and fHbp in the variant 1, 2, or 3 group. By adsorption studies, the principal bactericidal antibody target was determined to be fHbp. Thus, native OMV vaccines from mutants expressing fHbp variants have the potential to be safe for humans and to confer broad protection against meningococcal disease from strains expressing fHbp from each of the antigenic variant groups.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/genetics , Secretory Vesicles/immunology , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cytokines/metabolism , Female , Humans , Leukocytes, Mononuclear/immunology , Meningococcal Vaccines/genetics , Mice , Microbial Viability , Neisseria meningitidis, Serogroup B/immunology , Secretory Vesicles/genetics
10.
Infect Immun ; 76(9): 4232-40, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18591239

ABSTRACT

No broadly protective vaccine is available for the prevention of group B meningococcal disease. One promising candidate is factor H-binding protein (fHbp), which is present in all strains but often sparsely expressed. We prepared seven murine immunoglobulin G monoclonal antibodies (MAbs) against fHbp from antigenic variant group 2 (v.2) or v.3 ( approximately 40% of group B strains). Although none of the MAbs individually elicited bactericidal activity with human complement, all had activity in different combinations. We used MAb reactivity with strains expressing fHbp polymorphisms and site-specific mutagenesis to identify residues that are important for epitopes recognized by six of the v.2 or v.3 MAbs and by two v.1 MAbs that were previously characterized. Residues affecting v.2 or v.3 epitopes resided between amino acids 174 and 216, which formed an eight-stranded beta-barrel in the C domain, while residues affecting the v.1 epitopes included amino acids 121 and 122 of the B domain. Pairs of MAbs were bactericidal when their respective epitopes involved residues separated by 16 to 20 A and when at least one of the MAbs inhibited the binding of fH, a downregulatory complement protein. In contrast, there was no cooperative bactericidal activity when the distance between residues was >or=27 A or

Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Complement System Proteins/immunology , Microbial Viability , Amino Acid Sequence , Animals , Antibodies, Bacterial/isolation & purification , Antibodies, Monoclonal/isolation & purification , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Epitope Mapping , Humans , Mice , Molecular Sequence Data , Protein Binding , Sequence Alignment , Sequence Analysis, DNA
11.
J Infect Dis ; 198(2): 262-70, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18505380

ABSTRACT

BACKGROUND: Outer membrane vesicle (OMV) vaccines from mutant Neisseria meningitidis strains engineered to overexpress factor H-binding protein (fHbp) have elicited broadly protective serum antibody responses in mice. The vaccines investigated were not treated with detergents to avoid extracting fHbp, which is a lipoprotein. Because of their high endotoxin content, the vaccines would not be safe to administer to humans. METHODS: We prepared a native OMV vaccine from a strain engineered to overexpress fHbp and in which the gene encoding LpxL1 was inactivated, which reportedly decreases endotoxin activity. RESULTS: The OMV vaccine from the mutant had a similar or lower ability to induce the expression of proinflammatory cytokines by human peripheral blood mononuclear cells, compared with a detergent-extracted wild-type OMV, and 1000-10,000-fold lower activity than a native wild-type OMV. In mice, the OMV vaccine from the mutant elicited higher serum bactericidal antibody responses to a panel of heterologous N. meningitidis strains than did a control multicomponent recombinant protein vaccine or a detergent-extracted OMV vaccine that has been demonstrated to confer protection against meningococcal disease in humans. CONCLUSIONS: The data illustrate the potential to develop a broadly immunogenic native OMV vaccine that has decreased endotoxin activity and is potentially suitable for testing in humans.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Receptors, Complement/immunology , Antibody Formation , Antigens, Bacterial , Bacterial Proteins/genetics , Cytokines/analysis , DNA Primers , Endotoxins , Gene Amplification , Polymerase Chain Reaction
12.
J Infect Dis ; 197(7): 1053-61, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18419542

ABSTRACT

BACKGROUND: Antibodies to factor H (fH)-binding protein (fHBP), a meningococcal vaccine antigen, activate classical complement pathway serum bactericidal activity (SBA) and block binding of the complement inhibitor fH. METHODS: To understand these 2 functions in protection, we investigated the interactions of human complement and 2 anti-fHBP monoclonal antibodies (MAbs) with encapsulated Neisseria meningitidis. RESULTS: JAR 3 (IgG3) blocks fH binding and elicits SBA against 2 strains with naturally high fHBP expression and a low-expressing strain genetically engineered to express high fHBP levels. JAR 4 (IgG2a) does not block fH binding or elicit SBA. Neither MAb alone elicits SBA against 2 other strains with low fHBP expression, but together the MAbs increase C4b binding and elicit SBA; JAR 3 alone also is bactericidal in whole blood. In nonimmune blood, fHBP knockout mutants from high-expressing stains do not survive, but mutants of low-expressing strains do. CONCLUSIONS: Expression of fHBP is a prerequisite for bacterial survival in blood only by strains with naturally high fHBP expression. In low-expressing strains, combinations of 2 nonbactericidal anti-fHBP MAbs can bind to nonoverlapping epitopes, engage C1q, activate C4, and mediate classical complement pathway SBA. In the absence of sufficient C4b binding for SBA, an individual MAb can have opsonophagocytic bactericidal activity.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Complement System Proteins/immunology , Microbial Viability , Neisseria meningitidis/immunology , Antibodies, Monoclonal/immunology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Colony Count, Microbial , Complement System Proteins/metabolism , Gene Deletion , Genes, Bacterial , Humans , Protein Binding
13.
Vaccine ; 25(10): 1912-20, 2007 Feb 26.
Article in English | MEDLINE | ID: mdl-16677743

ABSTRACT

A broadly protective vaccine against meningococcal group B disease is not available. We previously reported that an outer membrane vesicle (OMV) vaccine containing over-expressed genome-derived antigen (GNA) 1870 elicited broader protective antibody responses than recombinant GNA1870 or conventional OMV vaccines prepared from a strain that naturally expresses low amounts of GNA1870. Certain wildtype strains such as H44/76 naturally express larger amounts of GNA1870 and, potentially, could be used to prepare an improved OMV vaccine without genetic over-expression of the antigen. We transformed H44/76 with a shuttle vector to over-express variant 1 (v.1) GNA1870 and compared the immunogenicity in mice of OMV vaccines prepared from wildtype H44/76 (v.1), the mutant, and a recombinant v.1 GNA1870 vaccine. Mice immunized with OMV with over-expressed GNA1870 developed broader serum bactericidal and/or greater C3 deposition activity on the surface of encapsulated strains of N. meningitidis than control mice immunized with the OMV vaccine prepared from the wildtype strain, or the rGNA1870 vaccine. When a panel of group B strains from patients in California was tested, sera from mice immunized with the OMV vaccine containing over-expressed GNA1870 were bactericidal against 100% of the v.1 strains. In contrast, only 20% of isolates that expressed subvariants of the v.1 GNA1870 protein were susceptible to bactericidal activity of antibodies elicited by the rGNA1870 or conventional OMV vaccines. Thus, even a modest increase in GNA1870 expression in a strain that naturally is a high producer of GNA1870 results in an OMV vaccine that elicits broader protection against meningococcal disease.


Subject(s)
Antigens, Bacterial/immunology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/immunology , Complement C3b/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Mice , Microbial Viability , Protein Binding
14.
J Infect Dis ; 192(4): 580-90, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16028126

ABSTRACT

Background. Meningococcal outer membrane vesicle (OMV) vaccines are efficacious in humans but have serosubtype-specific serum bactericidal antibody responses directed at the porin protein PorA and the potential for immune selection of PorA-escape mutants.Methods. We prepared an OMV vaccine from a Neisseria meningitidis strain engineered to overexpress genome-derived neisserial antigen (GNA) 1870, a lipoprotein discovered by genome mining that is being investigated for use in a vaccine.Results. Mice immunized with the modified GNA1870-OMV vaccine developed broader serum bactericidal antibody responses than control mice immunized with a recombinant GNA1870 protein vaccine or an OMV vaccine prepared from wild-type N. meningitidis or a combination of vaccines prepared from wild-type N. meningitidis and recombinant protein. Antiserum from mice immunized with the modified GNA1870-OMV vaccine also elicited greater deposition of human C3 complement on the surface of live N. meningitidis bacteria and greater passive protective activity against meningococcal bacteremia in infant rats. A N. meningitidis mutant with decreased expression of PorA was more susceptible to bactericidal activity of anti-GNA1870 antibodies.Conclusions. The modified GNA1870-OMV vaccine elicits broader protection against meningococcal disease than recombinant GNA1870 protein or conventional OMV vaccines and also has less risk of selection of PorA-escape mutants than a conventional OMV vaccine.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Proteins/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Animals , Animals, Newborn , Antibody Affinity , Bacteremia/prevention & control , Complement C3/physiology , Gene Expression , Humans , Male , Meningococcal Infections/prevention & control , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...